
	
	
		
			
				
				
				
			
			
		

		
				
					
						Features
					
				
	
					
						Add-Ons
					
				
	
					
						Templates
					
				
	
					
						Download CFF
					
				
	
					
						Support
					
						Documentation
	Frequently Asked Questions (FAQ)
	Contact Us
	Request a Customization

				
	
					
						The Blog
					
				
	
					
						Demo
					
				
	
					Marketplace
				

		
	

	

			
			 	How it works?
			
	
			 	Installation
			
	
			 	Inserting the CFF on page
			
	
			 	Register the plugin
			
	
			 	Managing Forms
					Check the submissions
	Editing an entry
	Export the submissions to a CSV File
	Import/Export forms

			
	
			 	The Forms Builder
					Form title and predefined designs
	Customize the form's design
	Common fields
	Container fieldsUsing container fields to distributed the fields in columns
	DataSource fields
	Editing fields
	Calculated fields settings
	DataSource fields settings
	Create dependencies between fields

			
	
			 	Settings area of the forms
					Define texts
	Validation settings
	Submit button and thank you page
	Payment configuration
	PayPal settings
	Form processing / Email settings
	Email copy to user
	Captcha verification

			
	
			 	Displaying form summary in the thanks page
			
	
			 	Displaying the list of form submissions
			
	
			 	Tags allowed in the thanks page, and notification emails
			
	
			 	Create javascript variables to use in the equations
			
	
			 	Add-Ons
			 		Server Side Equations add-on
	Users Permissions add-on
	User Registration Form add-on
	Verification Code add-on
	Unique Fields Values add-on
	Upload add-on
	Signature add-on
	iCal add-on
	CSV Generator add-on
	PDF Generator add-on
	WooCommerce add-on
	Easy Digital Downloads add-on
	The Events Calendar add-on
	MailPoet add-on
	AffiliateWP add-on
	Google Analytics add-on
	Google Places add-on
	Autocomplete Places add-on
	reCAPTCHA add-on
	SalesForce add-on
	WebHook add-on
	WebMerge add-on
	Sendinblue Contact add-on
	Integrate the form with Silverpop using the WebMerge or WebHook add-ons
	PrintFriendly add-on
	DropBox Integration add-on
	ip2location add-on
	MailChimp add-on
	Mautic add-on
	HubSpot add-on
	Emma add-on
	Twilio add-on
	PayPal pro add-on
	PayPal Checkout add-on
	Authorize.Net add-on
	Stripe add-on
	Stripe Checkout add-on
	Skrill Payments Integration add-on
	TargetPay (iDeal) add-on
	Mollie (iDeal) add-on
	RedSys add-on
	RedSys Bizum add-on
	SagePay add-on
	Sage Payment add-on
	PayTM add-on
	eWay add-on

			
	
			 	Equations and operations
			 		Mathematical operations
	Conditional statements
	Financial operations
	Date Time operations
	Distance operations
	Managing Fields operations
	Third-party Connection operations
	Server Side operations
	Chart.js operations
	URL operations
	Handling of Files and Their Properties
	Text Operations
	Location Operations
	Cookies Operations

			
	
				Troubleshoot & general settings area
			
	
				Filters and Actions
			
	
				Tips and Tricks
			 		Set the value to a slider control programmatically
	Create relationships between date fields
	Create new validation rules
	Storing data in a different database
	Populate a form by default
	Populate the form B with the data submitted by the form A
	Create new predefined template
	Printing a form

			
	
Other Resources

	

	
		
			
				Plugin Documentation

				Detailed documentation about all features and settings of CFF.

			

		

		

		
			
				How it works?

				From the dashboard/configuration area the process is as follows:

					Insert data fields into the form
	Insert a calculated field and define the calculation rule on it to store the calculated value
	Configure the general form processing, email and PayPal settings if needed
	Publish the form from a post or page (go to edit posts or pages).

				From the end user (visitor) point of view, the process is as follows:

					The user fills the data fields
	The calculated fields (if any) will automatically show the calculated value
	If the form Processing is enabled:
							If PayPal integration isn't enabled:
									The user clicks "submit" and you (the website owner or administrator) receive a notification email with the data posted by the user.
	The user receives an automatic "confirmation/thank you" email.
	The user is redirected to a "confirmation/thank you" page into your WordPress website

							
	If PayPal integration is enabled:
									The user clicks "submit" and is automatically sent to PayPal for the payment
	In background (transparent to the user): The request is saved into the local database and mark as "un-paid"
	The user completes the payment at PayPal
	In background (transparent to the user): Upon completed the payment, you (the website owner or administrator) receive a notification email with the data posted by the user.
	In background (transparent to the user): The request is marked as "paid".
	The user receives an automatic "confirmation/thank you" email.
	The user returns to a "confirmation/thank you" page into your WordPress website

							

					

			

		

		
			
				Installation

				To install the WordPress plugin follow these steps:

					Download the plugin to your computer.
	Go to the plugins section in WordPress
	If has been installed another version of the plugin, deactivate it, and then press the corresponding "Delete" button.
	Press the "Add New" button at top of section.
	Press the "Upload Plugin" button, and select the zipped file downloaded in the first step.
	Finally, install and activate the plugin.

			

		

		
			
				Inserting the CFF on Page

				Each form has a shortcode associated with it, which you can see both in the form list and when you edit them.

				

				Form shortcodes support several attributes, such as:

					
						id, represents the id of the form you want to load.
						

						[CP_CALCULATED_FIELDS id="1"]

					
	
						class, allows you to assign a CSS class name to the form and customize its design.
						

						[CP_CALCULATED_FIELDS id="1" class="class-name"]

					
	
						iframe, accepts the values 1 or 0. Allows you to load the form inside an iframe tag or directly on the web page.
						

						[CP_CALCULATED_FIELDS id="1" iframe="1"]

					
	
						asynchronous, accepts the values 1 or 0. The asynchronous attribute must be used in combination with the iframe to defer the loading of the form after completing the page load to increase the page load speed.
						

						[CP_CALCULATED_FIELDS id="1" iframe="1" asynchronous="1"]

					

				Form shortcodes also support personalized attributes, which the plugin converts into globally scoped javascript variables that you can use from equations associated with calculated and DS fields.

				[CP_CALCULATED_FIELDS id="1" custom_attr="234"]

				From the equation, you can use the custom_attr variable. Ex. cff_var['custom_attr']*fieldname1

				Another valid notation is cff_var.custom_attr*fieldname1

				To publish the form on your website, all you need to do is paste its shortcode into a page's content. Additionally, the plugin includes modules for the most popular page builders, such as
				Gutenberg, Classic Editor, Elementor, Page Builder by SiteOrigin, Beaver Builder, DIVI, among others.

					Configure the settings at the administration menu >> Settings >> Calculated Fields Form.
	To insert a form into some pages or posts, use the specific CFF block, widget or icon:
						

						Using the Gutenberg Editor

						
						

						Using the WordPress Classic Editor

						
						

						Using Elementor

						
						

						Using Page Builder by SiteOrigin

						
						

						Using Beaver Builder

						
						

						Using DIVI Builder

						
						

					
	After doing that, the tag [CP_CALCULATED_FIELDS id="1"] will be inserted into your content. The "id" is optional, if not specified the first form will be used. When you preview the content in the public website that tag will be replaced by the reservation form:
						

						
						

						Note: To assign a classes names to the forms, use the "class" attribute with the classes names separated by blank characters: [CP_CALCULATED_FIELDS id="1" class="class-a class-b class-c"]
						

					
	The Claculated Fields Form includes multiple predefined designs.
						

						
					

			

		

		
			
				Register the plugin

				The "CFF" is completely functional even without be registered. But after registering the plugin, the updates are received directly into WordPress.

				For registering the plugin follows the steps below:

					Go to the settings page of the plugin through the menu option: "Settings/Calculated Fields Form"
	Enter the email address used to purchase the plugin, in the attribute: "Enter the email address of buyer"
	Press the "Register" button.

				

				
After registering the plugin the updates are notified in the "Updates" section of WordPress.

			

		

		
			
				Managing Forms

				After going to the WordPress administration menu >> Settings >> Calculated Fields Form you will see the list of forms like in the following image:

				

				For each form you will see the following options:

					ID: Identification number of the form, useful when publishing an specific contact form.
	Form Name: Name to identify the form. Visible only from the admin area.
	Update: Updates the form name.
	Settings: For managing the form settings.
	Clone: Duplicate/clone a form.
	Messages: Printable list of messages (both paid and unpaid).
	Delete: Deletes the form and all its messages and settings.
	Shortcode: An alternative way for publishing the form.

				After clicking the "Settings" button you will jump to a new page with the form builder a other configuration options as explained below.

				
					Check the submissions

					
						Professional Version
						Developer Version
						Platinum Version
					

					

					Press the "Entries" button, corresponding to the form. The entries screen displays the list of submissions, and a filtering section to reduce the submissions by form, a time interval, or a text in the data

					From the entries screen it is possible remove a submission, or submissions group, change its status to paid/unpaid, editing the entry data, but from this screen is possible export all submissions to a CSV file

				

				
					Editing an entry

					
						Professional Version
						Developer Version
						Platinum Version
					

					

					For editing the information associated to an entry in the list press the corresponding "Edit" button. The action will load a form with the fields in raw mode, not associated to the form's structure, to modify them freely.

				

				
					Export the submissions to a CSV File

					
						Professional Version
						Developer Version
						Platinum Version
					

					

					For exporting the submitted information to a CSV file, press the "Messages" button corresponding to the form, and press the "Export to CSV" button, select the location where will be saved the CSV and that's all. The first row of CSV file allows identify each of fields, the text used to identify the field will be the short label, defined in the field, or the label in case that the short label is not defined.

					Related Information....

						DOC: CSV Generator add-on
	BLOG: Storing the information collected by the form in a CSV file and import the file into Google Sheet

				

				
					Import/Export Forms

					
						Professional Version
						Developer Version
						Platinum Version
					

					

					The "Calculated Fields Form" allows exporting the forms created in a WordPress website to be imported in other websites(*). The feature is really thankfully for owners or developers of multiple websites to avoid implementing the same form once and once again.

					Note(*): Both websites must be using the same version of the plugin to have a compatible exported file.

					To export a form:

						Go to the settings page of the plugin through the menu option: "Settings/Calculated Fields Form"
	Select the form from the list: "Export this form structure and settings" (in the "Import/Export Area"), and press the "Export" button.
	Finally, select a location in your computer to save the exported file.

					To import a form:

						Go to the same area mentioned in the previous section.
	Choose the previously exported file (.cpfm) that contains the form's structure and settings.
	Finally, press the "Import" button.

The new form will appear in the list of forms. To modify it use the related "Settings" button.

				

			

		

		
			

				The Form Builder

				The Form Builder lets you to add/edit/remove fields into the form and also to specify the validation rules for your form (required fields, email fields, etc...).

				

				
					Form title and predefined designs

					The "Form Settings" tab allows define the form's title and description, as the placement of labels with respect the fields (at top, at left, aligned to the right).

					In the "Form Settings" tab is possible to enable the autocompletion of fields, evaluate dynamically the equations (or evaluate the equations through a "Calculate" button). In case of evaluate the equations dynamically it is possible configure the form to evaluate the equations in the onchange events, or in the onchange and keyup events.

					Furthermore in the forms settings tab it is possible configure the form's design. The plugin includes multiple predefined designs.

					

					Customize the form's design:

					If the browser's persistence option is ticked the plugin will store the data entered by the users, locally in their browsers (only compatible with the browsers with support for the localStorage object) until the form be submitted. So, if an user that is filling the form closes the tab, the next time the user visit the webpage the form's fields will be prefilled with the data stored in his browser.

					Through the "Customize Form Design" attribute in the "Form Settings" tab, it is possile to enter the CSS rules to apply to the form and customize its appearance.

					Related Information....

						DOC: Form Templates
	FAQ: How can I apply CSS styles to the form fields?
	BLOG: Customizing the form's design
	BLOG: How do I create a new template to use with my forms?

 Distributing fields in columns

 Another alternative to distribute the fields in columns would be to assign class names to them.

 Related Information....

						BLOG: Formatting the form (distributing the fields in columns)

				

				
					The following field types are currently available:

						Single Line Text: Classic text input.
	Currency: A classic input field for currency values, that allows separator for thousands, and currency symbols.
	Number: This field can validate if only digits or a valid number was entered.
	Slider: Numeric field whose value is modified sliding a handle.
	Color: Color picker control.
	Email: This field validates that the email address has a valid format.
	Date/Time: Date-picker. Can be setup also to show also a selectable year and month, for example for birth date fields, and time fields.
	Text area: Allows the users to enter multi-line texts.
	Checkboxes: Classic checkboxes, select one or more on a group.
	Radio Buttons: Radio buttons, select one of many.
	Dropdown: Classic select / dropdown field.
	Upload File: For uploading files.
	Password: A field that shows * instead the typed letters. You can also add a confirm password validation.
	Phone field: Supports international formats line ###-###-#####. The format is configurable.
	Instruct. Text: Informative field to display instructions for users.
	Hidden: A hidden field.
	Section Break: Includes a line and text to separate groups of fields.
	Page Break: Useful for creating multi-page forms. The "page break" marks the start of a new page in the form builder
	Summary: Displays a summary of form fields with their labels and values.
	Media: Allows you to insert images, audios or videos.
	Recording: In devices with video camera and/or microphone, it allows recording the user.
	Button: Insert a button in the form. The buttons supported are: common button, calculate button, reset, or printing form (the submit button is inserted from the form settings).
	HTML Content: General purpose field to include HTML tags in the form.
	Acceptance (GPDR): Required field to confirm that the user accepts the terms and conditions of the website.
	Calculated field: It's highlighted with a different color since it's a special field that can calculate its value from the data entered in other fields. This field is explained in detail below.

				

				
					Container Fields

					The form builder includes some container controls. The container controls allow to insert another controls in them:

						Fieldset Container: Allows insert a fieldset control in the form, with a legend.
	Div Container: Inserts a container very useful for grouping related controls, and not modifies the appearance of the form.
						

 Using the container fields to distribute the fields in columns

 Related Information....

						BLOG: Formatting the form (distributing the fields in columns)

				

				
					DataSource Fields

					
						Developer Version
						Platinum Version
					

					In addition to the above, the following fields are available only in the Developer and Platinum versions of the plugin:

						RecordSet DS: A hidden field that gets its values from one of following datasources - MySQL Database, CSV file, JSON structure, or form submission fields. The "RecordSet DS" fields are used as intermediary to populate other fields in the form, reducing the number of connections to server side to get the records.
	DataTable DS: Loads the Recordset DS records into HTML tables by using the DataTables JS library.
	Line Text DS: An input field that gets its default values from one of following datasources - MySQL Database, Posts information, Taxonomies information or Users information.
	Number DS: An input field that gets its default values from one of following datasources - MySQL Database, Posts information, Taxonomies information or Users information.
	Email DS: An input field for Email address that gets its default values from one of following datasources - MySQL Database or Users information.
	Text Area DS: A text area field that gets its default values from one of following datasources - MySQL Database, Posts information.
	Checkboxes DS: Checkboxes for selecting one or more options into the same field that gets its options from one of following datasources - MySQL Database, CSV, Posts information, Taxonomies information or Users information.
	Radio Btns DS: Radiobuttons for selecting one option between the options available for the field that gets its options from one of following datasources - MySQL Database, CSV, Posts information, Taxonomies information or Users information.
	Drop-down DS: A select / drop down list for selecting one of the values listed that gets its options from one of following datasources - MySQL Database, CSV, Posts information, Taxonomies information or Users information.
	Date Time DS: Date Time field whose invalid and valid dates can be loaded from a RecordSet DS field.
	Hidden DS: A hidden field that gets its value from one of following datasources - MySQL Database, Posts information, Taxonomies information, or Users information.

					Related Information....

						BLOG: Using the information stored in a database or csv file in the form

				

				
					Editing the field settings in the Form Builder

					

					When you click a field already added, you can edit its details and validation rules. The following properties are useful:

						Field Label: Label for the field in the public form and into the email.
	Field tag for the message: In addition to the general <%INFO%> tag, you can use this tag to show the field value into a specific tag of the email.
	Specific settings: The settings depends of the field type, for example the format of the phone number, the date format, etc...
	Validation rule: The validation rules depends of the field type, example: required, only digits, valid email, valid number, etc...
	Predefined value: Pre-filled value for the field, if any.
	Instructions for user: This text will appear in a smaller form below the field. It's useful for giving instructions to the user.
	Add CSS layout keywords: Customize the look & feel. If used, this field must contain the name of the CSS class and not the styles rules directly.

 The plugin includes predefined classes that you can assign to the fields through the "Add CSS Layout Keywords" attribute:

 hide to hide the field by default.

 ignorefield hides the field, but unlike the hide class, ignorefield disables the field so that it does not affect the equations.

					Other features in the form builder:

						Equal fields validation: Use it for example to confirm if the email or password typed in two different fields are the same. This is valid for "Single Line Text", "Password" and "Email" fields.
	Dependent fields: Use this feature for show/hide fields (any field type) based in the selection made on other fields (checkboxes, radiobuttons or select/drop-down fields).

					Related Information....

						BLOG: Dependencies between fields	

				

				
					calculated fields settings:

					When clicking over a calculated field in the form builder the following settings will appear:

					

					In addition to the general fields settings there are three additional settings:

						Set Equation: To enter the equation/formula used for the calculation.
	Operands: To select the fields from the form that will be used in the calculations. Click the "+" button for adding a field into the equation/formula.
	Operators: Operators and functions supported for the formula...

					If you are implementing a complex equation, you can press the "ADVANCED EQUATION'S EDITOR" button in the field's settings, to load a javascript editor with auto-completion, colors code for reserved words, errors detection and more:

					

					Note for advanced users: The JavaScript ternary operator is also supported: (condition ? value_if_true : value_if_false). See the "Ideal Weight Calculator" for a sample.

				

				
					For DataSource controls

					
						Developer Version
						Platinum Version
					

					This is a step by step about the use of datasource controls

						Insert in the form the control with access to external datasources (these controls are represented with the DS at the end of its names)
	Select the control in the form, and pays attention to the "Define Datasource" section.
							There are different datasources: MySQL Database, CSV file, Recordset, Post Type, Taxonomy, User Data, and Forms Submissions.

								MySQL Database, allows populate the field with the data stored in database.
	CSV, allows populate the field with the data stored in a CSV file (Datasource available only in fields with multiple entries: DropDown DS, Checkbox DS, Radio Button DS).
	Recordset, allows populate the fields from the records stored in a "RecordSet DS" field.
	Post Type, allows populate the field with the information associated to a specific post type (like the products names in a Woocommerce, etc.)
	Taxonomy, allows populate the field with the information of taxonomies.
	User Data, to get the information of WordPress users.
	JSON, read records from objects array.
	And finally the Forms Submissions, to read other forms' submissions.

							Note: Depending of control selected will be available all available datasources, or not.

						

					So, suppose we want populate the field with the data stored in a database table.

						Select Database, from the list of datasources.
	If the database is different that used by WordPress, will be required enter the Host's address, the authentication data to connect to the database (username and password), and the name of database(a host can include multiple databases). There is a button for testing the database connection.
							Note: If the database is the same used by WordPress, leave empty the fields above.

						

					Now its time to define the query to database

						Enter the name of table's column, that store the control's values. If you are using the Drop-down DS control, it has multiple options; each option of drop-down list includes a value and text; in this option you determine the column in the table that includes the values of options.
	Enter the column's name that stores the control's texts. Similar to the previous step, but in this case the column stores the texts of the options (in case of checkbox or radio buttons, this column contain the label of options)
	Type the table name, a database can include multiple tables, you should identify the table you are using.
	Type a condition if required. If you want filtering the values to display in the control, type the condition in this attribute. For example, suppose you want load the data of posts that are public, the condition in this case would be: post_status='publish', where post_status is the name of column, and publish is the value for filtering.
	The "Order by" is used to order the query results by the values in columns, and not by the order that data were stored in database. For example, suppose you want populate the control with the users names of WordPress, and you want order the results alphabetically, in this case the "order by" would be: display_name ASC, where display_name is the column's name, and will be ordered in ascending way.
	Limit, enter an integer number to reduce the number of query results.

					If your query is very complex, and you prefer create it manually; selects the option "Custom Query", but in this case you should type all the query. Pay attention because you should use alias in the "SELECT" clause, to indicate the colum used to get the values, and the column used to get the texts. For example, a hypothetical query:

SELECT column1 AS value, column2 AS text FROM tablename WHERE column3 > 5 ORDER BY column2 ASC LIMIT 5

					The use of database as datasource, allows filtering the information to populate the fields with the values on other fields in the form, or javascript variable. The use of variables are only accepted in the "Condition" section ("WHERE" clause), and requires the format: <%varname%>. For example, to get the title of a post, filtering by its ID, if the id is defined through the fieldname3 field, the "Condition" attribute of the query would be: ID=<%fieldname3%>

					Related Information....

						BLOG: Using the information stored in a database or csv file in the form

					Constants to use in the queries

					Besides the variables, the plugin allows the use of some constants in the queries. The constants must be enclosed between curly brackets, for example: {user.id}

					Assuming you want to insert a "DropDown DS" field where the texts of the choices are the posts' titles, and the values of choices are their IDs, but only for the posts belonging to the logged user, in this case the query to associate with the "DropDown DS" field would be:

SELECT ID as value, post_title as text FROM {wpdb.posts} WHERE post_author={user.id}

					In the previous query the constants: wpdb.posts corresponds to the name of the posts table in your WordPress, and user.id to the id of logged user.

					The complete list of constants:

					blog.id, the id of the current blog (useful in multisite WordPress installations)

					wpdb.prefix, prefix used by WordPress in the name of database's tables, for example, the text "wp_" into the table's name "wp_posts"

					wpdb.comments, the name of Comments table

					wpdb.commentmeta, the name of Comment Metadata table

					wpdb.links, the name of Links table

					wpdb.options, the name of Options table

					wpdb.postmeta, the name of Post Metadata table

					wpdb.posts, the name of Posts table

					wpdb.terms, the name of Terms table

					wpdb.term_relationships, the name of Term Relationships table

					wpdb.term_taxonomy, the name of Term Taxonomy table

					wpdb.termmeta, the name of Term Meta table

					wpdb.usermeta, name of User Metadata table

					wpdb.users, the name of Users table

					wpdb.blogs, the name of Multisite Blogs table

					wpdb.blog_versions, the name of Multisite Blog Versions table

					wpdb.site, the name of Multisite Sites table

					wpdb.sitecategories, the name of Multisite Sitewide Terms table

					wpdb.sitemeta, the name of Multisite Site Metadata table

					user.id, the id of the current user

					user.login, the username of the current user

					user.nicename, the URL-friendly name for the current user

					user.email, the email address of the current user

					user.url, the URL associated to the current user

					user.display_name, the user's name that is shown on the site for the current user

					user.first_name, the first name of current user

					user.last_name, the last name of current user

					How to use CSV files as datasource?

					The CSV files can be used as data sources for fields with multiple choices (DropDown DS, Radio Btns DS, Checkboxes DS). The initial steps are similar to the previous section, but selecting the "CSV" option as data-source instead of selecting "Database".

					A comma-separated values (CSV) file stores tabular data (numbers and text) in plain text. Each line of the file is a data record. Each record consists of one or more fields, separated by commas. The use of the comma as a field separator is the source of the name for this file format.

					For CSV files, the plugin includes the attributes:

					Select CSV file: allows to select between a local or online file. For local files, the field displays a file field for selecting the CSV file. For online files the field displays a text field for entering the URL to the CSV file.

					Use headline: tick the checkbox if the first line of CSV file is a headline to identify the data in the next records.

					Delimiter: enter the delimiter symbol used as the field separator on each record.

					Press the "Import CSV" button to import the records into the form. This action will feed the lists "Select column for texts" and "Select column for values", that are used for selecting which fields will be used texts and values of the choices in the DS field.

					Where the value is equal to: allows filtering the rows to include in the field. The value entered in the attribute must be equal to the value in the column selected for the field's values. It is possible to use the values in other fields in the form, or variables, for filtering the rows, similar to the "Database" datasource.

					Using Recordset as datasource.

					
					
	Select the recordset option from the list of data sources.
	Select the "RecordSet DS" field from the list of recordsets.
	Type the property in the record to be used as the value of the DS field.
	Type the property in the record to be used as the value of the DS field.
	
							Enter the conditions for filtering.

							This clause require additional instructions, that are explained with an example:

							Assuming the values in the "RecordSet DS" fields, selected as datasource, is a list of records with the structure:

{
	'First Name' : 'John',
	'Last Name' : 'Smith',
	'Birth Date' : '1th Jan, 2001'
}

							and you want populate a "Line Text DS" field with the "Birth Name" of the user "John Smith"

							Type the property name: Birth Date in the "value" attribute.

							Enter the properties for filtering in the condition field (pay attention to the use of the reserved word "record" in the conditions):

							record['First Name']=='John'&&record['Last Name']=='Smith'

						

					
					Tips: Javascript is casesensitive, please, be careful with the properties names.

					In the conditions can be used the following comparison operators:

						equal to: ==

						non equal to: !=

						less than: <

						less than or equal to: <=

						bigger than: >=

						bigger than or equal to: >=
					

					And the logical operators:

						and: &&

						or: ||
					

					Related Information....

						BLOG: Using the information stored in a database or csv file in the form

				

				
					Create dependencies between fields

					Some fields, like radio groups, checkboxes and drop-down menu, allow dependencies in function to the option selected.

					For example, suppose your form includes a radio-group control with multiple choices: - House, - Car, - Electrodomestics, and each of them, uses different attributes. The house requires fields for address, number of rooms, etc; the car requires a field for trademark, model, etc. and finally the electrodomestics, will need type of electrodomestic,and more. So, if you want display the fields, depending of choice selected:

						Select the radio group fied in the form editor.
	Press the "Show dependencies" link, in the choices area.
	and select the field to display if the choice is selected. If you need associate multiple fields to the choice, press the plus button and select the new fields.

					The calculated fields allow dependencies too, but in function to its value. For example, if you are designing a form for selling electrodomestics, and you want display additional fields for finance the purchase, if the amount is bigger than or equal to $1000usd. In this case:

						Select the calculated field.
	In the "Define dependencies" section, select a rule in the "if the value is" dropdown, and enter the value in the input box.
	Select the field to display in case that the rule be valid. Using the "plus" buttons it is possible define multiple rules, or associate more than one field to the same rule.

					Create dependencies with other fields. It is possible create dependencies with Dropdown fields, checkboxes, radio buttons, and calculated fields. To define dependencies with other fields, would be necessary to use Calculated Fields as auxiliary fields. Simply, should to use the field as part of the equation associated with the calculated field, and create dependencies rules in function to the equation's result. The auxiliary fields are not relevant in the form's interface, to hide them, tick the checkbox: "Hide Field From Public Page"

				

				Related Information....

						BLOG: Dependencies between fields

			

		

		
			

				Settings area of the forms

				For each form you will be able to edit the following settings:

				Form Builder: Already explained in the previous sections (see above).

				
					Define Texts

					

					Area were define the texts for the general elements in the form

						Submit button label: The caption of submit button.
	Previous button label: The caption of the previous button.
	Next button label: The caption of next button.
	Captcha label: The title of Captcha section.
	Refresh captcha: The message to refresh the Captcha code.
	Security code label: Label to recommend entering the Captcha code.
	Captcha required: Error message if the Captcha is empty.
	Captcha error: Error message if the Captcha is wrong.
	Payment options: Payment option text.
	Coupon code label: Label used in the coupon section.
	Page X of Y: Label of pages in a multi-page form. Uses the format: Page {0} of {0}

				

				
					Validation Settings:

					

					This area contains the "texts" used for the validations. You can easily translate them to other languages.

						is required: Error message for required field.
	is email: Error message for email format.
	is valid date (mm/dd/yyyy): Error message for date format.
	is valid date (dd/mm/yyyy): Error message for date format.
	is number: Error message if the value is not a number.
	only digits: Error message if the value has not only digits.
	under maximum: Error message if the value is not in the correct interval.
	over minimum: Error message if the value is not in the correct interval.

				

				
					Submit button and thank you page:

					
						Professional Version
						Developer Version
						Platinum Version
					

					

						Display submit button?: Adds a submit button to the form.
	Thank you page (after sending the message): After the completing the payment (or after submit the form if the payment option is disabled) the user may be redirected to a page into your website (usually a "thank you" page). Type the page address into this field.

					Related Information....

						DOC: Displaying Form Summary in the Thanks Page
	DOC: Displaying the list of submissions

				

				
					Payment Configuration:

					
						Professional Version
						Developer Version
						Platinum Version
					

					

					
					PayPal Settings:

					

						Enable Paypal Payments: Allows to enable/disable the PayPal payment option.
	PayPal mode: Select here if you want to process real payments (production mode) or you want to test the form with the PayPal Sandbox.
	PayPal email: The email of the PayPal that will receive the payments.
	Request cost: Select the field on the form that contains the amount to be paid. In most cases it will be a calculated field but it can be also a classic field.
	Currency: The currency, example: USD, EUR, GBP, etc...
	A $0 amount to pay means: Select "skip payment" for accepting 100% discount codes or select "let the user enter any amount" for accepting donations or open payment amounts. The "Base Amount" attribute has precedence over this attribute.
	Base Amount: Allows to define a minimum amount to be charged through the form.
	PayPal product name: The name that will appear to the customer at PayPal. It is possible to define the name of the product through a field in the form. For example, for defining the product name with the value entered in the fieldname3 field, should be entered the special tag <fieldname3> as the value of this attribute.
	PayPal language: The language that will be used for the PayPal payment. It's any PayPal supported language.
	Payment frequency: Select here if you will be requesting a one-time payment or a recurrent/subscription payment.For recurring payments it is possible define a first payment different to the recurring payments, and delay the first payment to offer a trial period.

	Discount Codes: Use this section to define the accepted discount codes and the discount percent. A 100% discount means that the payment isn't required.

				

				
					Form Processing / Email Settings:

					
						Professional Version
						Developer Version
						Platinum Version
					

					

						"from" email: The email used as from in the notifications.It is strongly recommended the use of an email address in the website's domain. The main emails services (as Gmail, Hotmail, Yahoo, MSN, etc.) check the correspondence between the email address in the "Sender" header on emails, and the domains that send the emails. If the correspondence fails, the emails can be managed as Spam or as a "Phishing" email, in whose case would be deleted for security reasons.

	Destination emails (comma separated): List of administrators that will receive the email notification. To allow selecting the destination emails dynamically with a field in the form, enter the special tag of the field, for example: <%fieldname1%>
	Email subject: Subject of the notification email sent after completing the payment.
	Include additional information?: Optional information about the user IP and browser.
	Email format? Select if the email will be sent as plain-text or HTML-formatted.
	Message: Content of the notification email that you will receive. Keep the tag <%INFO%>, it will be replaced automatically with the form data send by the user.

					Related Information....

						BLOG: Sending notification emails with the Calculated Fields Form plugin
	DOC: Special tags in the notification emails and the thank you pages

				

				
					Email Copy to User:

					
						Professional Version
						Developer Version
						Platinum Version
					

					

						Send confirmation/thank you message to user?: Select if you want to sent the "confirmation/thank you" message to the user.
	Email field on the form: Select here the field that contains the user's email on the form.
	Email subject: Subject of the email sent to the user after payment
	Email format? Select if the email will be sent as plain-text or HTML-formatted.
	Message: Content of the email sent to the user after payment. The tag <%INFO%> will be replaced by the information sent using the form, if needed.

					Related Information....

						BLOG: Sending notification emails with the Calculated Fields Form plugin
	DOC: Special tags in the notification emails and the thank you pages

				

				
					Captcha Settings:

					
						Professional Version
						Developer Version
						Platinum Version
					

					

						Use Captcha Verification?: Select if the captcha image will be used.
	Width: Width of the captcha image.
	Height: Height of the captcha image.
	Chars: How many characters will appear in the captcha image.
	Min font size: Minimum size used for the font (randomized).
	Max font size: Maximum size used for the font (randomized).
	Preview: Preview for checking how the captcha image will look.
	Noise: Amount of noise to make it stronger.
	Noise Length: Length of the noise to modify its look.
	Background: Background color.
	Border: Border color.
	Font: Base font used to render the text. Four options already included.

					Related Information....

						DOC: reCAPTCHA add-on

				

			

		

		
			
				Displaying Form Summary in the Thanks Page

				
					Professional Version
					Developer Version
					Platinum Version
				

					Go to the thanks page
	Press the icon indicated in the next image, to insert a shortcode with format [CP_CALCULATED_FIELDS_RESULT]

				

				
				

				
				

				The shortcode to insert in the thanks page allows a total control over the content to display with it.

				In case to display all fields submitted with the form, is as simple as insert the shortcode: [CP_CALCULATED_FIELDS_RESULT]. But what to do if you want include in the thanks page only some of submitted fields, and not all?

				The shortcode allows define the "fields" attribute, to select the fields names to include in the thanks page, separated by the comma symbol. For example, suppose the form has three fields: fieldname1, fieldname2, and fieldname3, but we want include only the fieldname1, and fieldname3, and exclude the fieldname2, in this case the shortcode would be:

[CP_CALCULATED_FIELDS_RESULT fields="fieldname1,fieldname3"]

				But in some cases, we need more control over the content to display. By default, the shortcode is replaced by pairs of label-value for each field included in the thanks page. But what happen if you want display the label of fieldname1 in bold, or use a different label for the fieldname2, that the label used in the form?. In this case you should use the shortcode like a tag: [CP_CALCULATED_FIELDS_RESULT]...[/CP_CALCULATED_FIELDS_RESULT], and its content would be common HTML tags, with the field names using the same format that in the notification emails: <%fieldname#%>, to display only the label <%fieldname#_label%>, and to display only the value <%fieldname#_value%>. So, in this case the shortcode would be:

[CP_CALCULATED_FIELDS_RESULT]
<p>:</p>
<p>New Label: </p>
<p></p>
[/CP_CALCULATED_FIELDS_RESULT]

				To get the complete list of tags to include in the thank you page, read the "SPECIAL TAGS IN THE NOTIFICATION EMAILS" section .

				The shortcode accepts too the if_latest attribute, whose accepted values are: 0 or 1 (0 by default) to replace the shortcode, only if it corresponds to the latest submitted form. This attribute should be used in combination with the formid attribute described in the next section.

[CP_CALCULATED_FIELDS_RESULT formid="3" if_latest="1"]

				The if_paid attribute in the result shortcode will display the submitted information, only if its payment status is paid

[CP_CALCULATED_FIELDS_RESULT if_paid="1"]

				Associate a same thank you page with multiple forms

				The forms' structures can be very different, and an unique shortcode wouldn't be sufficient to represent all forms. An option would be insert a different summary shortcode for each form, defining the attribute: "formid" indicating the form's id, in each of shortcodes, in whose case the plugin will replace only the shortcode corresponding to the form that has been submitted:

[CP_CALCULATED_FIELDS_RESULT fields="fieldname1,fieldname3" formid="1"]

[CP_CALCULATED_FIELDS_RESULT fields="fieldname8,fieldname9,fieldname14" formid="2"]

[CP_CALCULATED_FIELDS_RESULT formid="4"]

[CP_CALCULATED_FIELDS_RESULT formid="5"]
<p>:</p>
<p>New Label: </p>
<p></p>
[/CP_CALCULATED_FIELDS_RESULT]

				Related Information....

					DOC: Special tags to use with the Results shortcode
	DOC: Displaying the list of submissions

			

		

		
			
				Displaying the list of submissions

				
					Professional Version
					Developer Version
					Platinum Version
				

					To display the list of summaries insert the shortcode [CP_CALCULATED_FIELDS_RESULT_LIST]

				This shortcode is similar to [CP_CALCULATED_FIELDS_RESULT]. With this shortcode it is possible to display all submitted fields or controlling the fields and format of the summary.

				However the [CP_CALCULATED_FIELDS_RESULT_LIST] requires the formid attribute with the form's id, or multiple forms ids separated by commas. For example: [CP_CALCULATED_FIELDS_RESULT_LIST formid="1"] or [CP_CALCULATED_FIELDS_RESULT_LIST formid="1,2,3"]

				Or at least a submission's id: [CP_CALCULATED_FIELDS_RESULT_LIST submission="123"]

				There are other attributes supported by the [CP_CALCULATED_FIELDS_RESULT_LIST] shortcode, but these are optional:

					submission: the list of submissions ids separated by comma. [CP_CALCULATED_FIELDS_RESULT_LIST formid="1" submission="8,20,230"]
	
						
							from: a text with date format (yyyy-mm-dd) to display the list of submissions from a specific date. [CP_CALCULATED_FIELDS_RESULT_LIST formid="1" from="2018-04-09"]
						

						The from attribute accepts relative dates, like from="+3weeks -1day", from="-1year", etc.

					
	
						to: a text with date format (yyyy-mm-dd) to display the list of submissions until a specific date. [CP_CALCULATED_FIELDS_RESULT_LIST formid="1" to="2018-04-09"]

						The to attribute accepts relative dates, like to="+2months +15days", to="-1week", etc.

					
	order: used for ordering the submissions in ascending or descending order. The accepted values are: ASC and DESC. [CP_CALCULATED_FIELDS_RESULT_LIST formid="1" from="2018-01-01" to="2018-04-09" order="DESC"]
	limit: used to display a specific number of submissions. [CP_CALCULATED_FIELDS_RESULT_LIST formid="1" limit="10"]
	events_per_page: allows paginate the submissions list. [CP_CALCULATED_FIELDS_RESULT_LIST formid="1" events_per_page="10"]

				To display the submissions list only to users with specific roles, it is possible to use the role attribute in the shortcode with one or multiple roles names separated by comma. [CP_CALCULATED_FIELDS_RESULT_LIST formid="1" role="administrator"]

				For controlling the format of submissions' summaries it is possible to insert the shortcodes with a content, similar to:

[CP_CALCULATED_FIELDS_RESULT_LIST formid="1"]
<p>:</p>
<p>New Label: </p>
<p></p>
[/CP_CALCULATED_FIELDS_RESULT_LIST]

				The complete list of tags to include in the shortcode is avalialbe in the "SPECIAL TAGS IN THE NOTIFICATION EMAILS" section .

				The if_paid attribute in the shortcode for the list of results will display only those submissions with payment status: paid

[CP_CALCULATED_FIELDS_RESULT_LIST formid="1" if_paid="1"]

				Displaying the submissions list using datatable

				To display the submissions list using datatable are required some specific attributes:

				layout with the table value

				table_head with the list of columns' labels, separated by comma symbols

				table_fields with the list of forms' fields, separated by comma symbols

				view_details accepts the values 1 or 0 to display or not an additional column with a button to option a popup with submission details

				order_by_column_index allows sorting the table rows by a column. It accepts the column index (starting at zero). The order_by_column_index attribute can be combined with the order attribute. The order attribute accepts the values asc and desc for sorting the rows in ascending or descending order, respectively.

				Ex.

[CP_CALCULATED_FIELDS_RESULT_LIST formid="1" layout="table" table_head="id, Column A, Column B, Column C" table_fields="itemnumber,fieldname1,fieldname2,fieldname3" view_details="1"]

				The controls of datatable are in English by default, to translate the controls' texts to another language, create a .js file with an object as its content similar to the following one (of course, with the texts translated)

{
 "decimal": "",
 "emptyTable": "No data available in table",
 "info": "Showing _START_ to _END_ of _TOTAL_ entries",
 "infoEmpty": "Showing 0 to 0 of 0 entries",
 "infoFiltered": "(filtered from _MAX_ total entries)",
 "infoPostFix": "",
 "thousands": ",",
 "lengthMenu": "Show _MENU_ entries",
 "loadingRecords": "Loading...",
 "processing": "Processing...",
 "search": "Search:",
 "zeroRecords": "No matching records found",
 "paginate": {
 "first": "First",
 "last": "Last",
 "next": "Next",
 "previous": "Previous"
 },
 "aria": {
 "sortAscending": ": activate to sort column ascending",
 "sortDescending": ": activate to sort column descending"
 }
}

				And finally, pass the file's URL as the table_language_url attribute of [CP_CALCULATED_FIELDS_RESULT_LIST] shortcode

				Ex.

[CP_CALCULATED_FIELDS_RESULT_LIST formid="1" layout="table" table_head="id, Column A, Column B, Column C" table_fields="itemnumber,fieldname1,fieldname2,fieldname3" table_language_url="https://wwww.website.com/path/lang.js"]

				Related Information....

					DOC: Special tags to use with the Results List shortcode

			

		

		
			
				Special tags in the notification emails and the thank you pages

				
					Professional Version
					Developer Version
					Platinum Version
				

				The special tags can be used with the notification emails (message and subject), the thank you pages, and from add ons like: Users Permissions add-on, WooCommerce, Easy Digital Downloads, PrintFriendly, etc.

				There are special tags that can be used in the notification emails to display the forms information:

				<%INFO%>, the tag <%INFO%> is replaced by the labels and values of fields that are submitted from the form.

				To insert only specific fields, use the format <%fieldname#%>, for example, if you want include the fieldname1 and fieldname3 in the notification email, use the tags <%fieldname1%>, and <%fieldname3%>, the tag will be replace by the pair: label-value of field.

				To insert only the field's label, use the format <%fieldname#_label%>, for example <%fieldname1_label%>

				To insert only the shortlabel (that is used too in the CSV files), use the format <%fieldname#_shortlabel%>, for example <%fieldname1_shortlabel%>

				To insert only the field's value, use the format <%fieldname#_value%>, for example <%fieldname3_value%>

				To display all previous tags only if the fields have been filled by the users, you should use the attribute if_not_empty in the tags:

<%INFO if_not_empty%>
<%fieldname# if_not_empty%>
<%fieldname#_label if_not_empty%>
<%fieldname#_value if_not_empty%>

				There are other special attributes to use in the tags. The values of the attributes are closed between the symbols {{...}}:

				before: The attribute allows to define a symbol, or a HTML tag, to display before the field in the notification email <%fieldname# before={{}} after={{}}%>

				after: The attribute allows to define a symbol, or a HTML tag, to display after the field in the notification email <%fieldname# after={{
}}%>

				These attributes give a big control over the information included in the notification emails. For example, inserting a tag like:

<p><%fieldname1 if_not_empty%></p>

				Inserts in the notification email, the pair of tags: <p></p>, if the value of the "fieldname1" field is empty. But if you inserts the previous tag with the attributes: before and after, like follow:

<%fieldname1 if_not_empty before={{<p>}} after={{</p>}} %>

				The pair of tags <p></p> won't be inserted in the notification email, if the value of the fieldname1 field is empty.

				separator: Allows to define a separator symbol to insert between the field's label, and its value. For example, if you insert the tag like: <%fieldname1 separator={{:}}%>, it would be replaced by field label : field value

				There are some special tags to define dependencies in the notification emails: <%fieldname#_block%><%fieldname#_endblock%>

				For example, to insert the fields: fieldname2 and fieldname3 in the email, only if the fieldname1 field was submitted, should be inserted the following tags in the email:

				

<%fieldname1_block%>
<%fieldname2%>
<%fieldname3%>
<%fieldname1_endblock%>

				

				and <%fieldname#_nonblock%><%fieldname#_endnonblock%>

				For example, to insert the fields: fieldname2 and fieldname3 in the email, only if the fieldname1 field was not submitted or it was submitted in blank, should be inserted the following tags in the email:

				

<%fieldname1_nonblock%>
<%fieldname2%>
<%fieldname3%>
<%fieldname1_endnonblock%>

				
				Other attributes to include with the fields tags and the blocks tags:

				if_value_is_greater_than includes the field (or block) if the field's value is greater than this attribute. For example: <%fieldname1 if_value_is_greater_than={{10}}%> the fieldname1 field would be included only if its value is greater than 10 (useful in case of number fields)

				if_value_is_greater_than_or_equal_to includes the field (or block) if the field's value is greater than or equal to this attribute. For example: <%fieldname1 if_value_is_greater_than_or_equal_to={{10}}%> the fieldname1 field would be included only if its value is greater than or equal to 10 (useful in case of number fields)

				if_value_is_less_than includes the field (or block) if the field's value is less than this attribute. For example: <%fieldname1 if_value_is_less_than={{10}}%> the fieldname1 field would be included only if its value is less than 10 (useful in case of number fields)

				if_value_is_less_than_or_equal_to includes the field (or block) if the field's value is less than or equal to this attribute. For example: <%fieldname1 if_value_is_less_than_or_equal_to={{10}}%> the fieldname1 field would be included only if its value is less than or equal to 10 (useful in case of number fields)

				if_value_is includes the field (or block) if the field's value is equal to this attribute. For example: <%fieldname1 if_value_is={{10}}%> the fieldname1 field would be included only if its value is equal to 10

				if_value_is_not includes the field (or block) if the field's value is different to this attribute. For example: <%fieldname1 if_value_is_not={{10}}%> the fieldname1 field would be included only if its value is not 10

				if_value_like includes the field (or block) if the field's value is included into this attribute. For example: <%fieldname1 if_value_like={{qwer}}%> the fieldname1 field would be included with value like qwerty (case insensitive). Recommended with text fields.

				if_value_unlike includes the field (or block) if the field's value is not included into this attribute. For example: <%fieldname1 if_value_like={{qwer}}%> the fieldname1 field would be included with values do not include qwer (case insensitive). Recommended with text fields.

				Sanitizing (or escaping) the fields' labels and/or values before outputting them (applied only to the fields' tags, not to the blocks):

				callback applies the callback function to the field (label, value or both) before replacing the tag. For example: <%fieldname1_value callback={{esc_js}}%>

				The list of accepted callbacks:

					esc_html
	esc_url
	esc_url_raw
	esc_js
	esc_attr
	esc_textarea
	sanitize_email
	sanitize_file_name
	sanitize_html_class
	sanitize_key
	sanitize_meta
	sanitize_mime_type
	sanitize_option
	sanitize_sql_orderby
	sanitize_text_field
	sanitize_title
	sanitize_title_for_query
	sanitize_title_with_dashes
	sanitize_user
	wp_filter_post_kses
	wp_filter_nohtml_kses

				More information about the callback's functions, visiting in the following link: Data Sanitization/Escaping

				To include the URL to the uploaded file, if the file field is the fieldname1, the tag to insert in the email and thank you page would be: <%fieldname1_url%>, but if the fieldname1 supports multiple files, the corresponding tag would be: <%fieldname1_urls%>. With these tags it is possible to define the in_tag attribute, whose possible values are: img and a, for using the URLs with the html tags for images or anchors, for example: <%fieldname1_urls in_tag={{img}}%>

				For files' paths, if the file field is the fieldname1, the tag to insert in the email and thank you page would be: <%fieldname1_path%>, but if the fieldname1 supports multiple files, the corresponding tag would be: <%fieldname1_paths%>.

				To display the final price, after apply the discount if was defined, use the tag <%final_price%>

				To display the coupon/discount applied, if was applied a discount, uses the tag <%coupon%>

				To display only the coupon code, the discount text, use the tag <%couponcode%>

				To display the payment option selected, in case that PayPal has been set as optional, use the tag <%payment_option%>

				To display if the payment has been completed or not, use the tag <%payment_status%>

				In the recurrent payments to display the id of the subscription, use the tag <%subscription_id%>

				If the form is integrated with PayPal, it is possible to include the PayPal transaction ID, using the tag <%transaction_id%>

				To include an unique number that identifies the submitted data into the system, uses the tag <%itemnumber%>. This number allows to identify easier the PayPal transference, and could be used as an order reference. The <%itemnumber%> tag accepts the length attribute: <%itemnumber length={{6}}%>

				To include the form's id, uses the tag <%formid%>. Allows to identify the form that was submitted.

 To include the form's name, uses the tag <%form_name%>.

 The <%form_title%> tag allows including the form's title.

 The <%form_description%> tag allows including the form's description.

 The tag <%from_page%> represents the URL of the page with the form.

 The tag <%thank_you_page%> represents the URL of the thank you page.

				To include the ip address of the user, <%ipaddress%>

				To include the submission date in the format: mm/dd/yyyy, <%submissiondate_mmddyyyy%>

				The tag support the separator parameter to select the symbol that separates the date components, <%submissiondate_mmddyyyy separator={{-}}%>

				To include the submission date in the format: dd/mm/yyyy, <%submissiondate_ddmmyyyy%>

				The tag support the separator parameter to select the symbol that separates the date components, <%submissiondate_ddmmyyyy separator={{-}}%>

				To include the submission time in the format: hh:mm, <%submissiontime%>

				To include the date in the format: mm/dd/yyyy, <%currentdate_mmddyyyy%>

				The tag support the separator parameter to select the symbol that separates the date components, <%currentdate_mmddyyyy separator={{-}}%>

				To include the date in the format: dd/mm/yyyy, <%currentdate_ddmmyyyy%>

				The tag support the separator parameter to select the symbol that separates the date components, <%currentdate_ddmmyyyy separator={{-}}%>

				To include the time in the format: hh:mm, <%currenttime%>

				If there is active the PDF Generator add-on, it is possible to use the tag: <%pdf_generator_url%> that would be replaced with the URL to the PDF file.

				If there is active the CSV Generator add-on, it is possible to use the tag: <%csv_generator_url%> that would be replaced with the URL to the CSV file.

				Related Information....

					BLOG: Sending notification emails with the Calculated Fields Form plugin

			

		

		
			
				Create JavaScript variables to be used in the equations

				- From GET, or POST parameters, SESSION variables, or COOKIES

				
					All Versions of the Plugin
				

				Gutenberg block to create variables

				

				WordPress classic editor

				

				The icon with the "X" symbol, that appears when editing the contents of pages or posts, inserts a shortcode in the content with the structure:

[CP_CALCULATED_FIELDS_VAR name="..."]

				The ... symbol should be replaced by the parameter or variable name. The variables are created as properties of the cff_var variable. For example, in the [CP_CALCULATED_FIELDS_VAR name="varname"] shortcode, you can access the variable value from the equations by using cff_var['varname'], or cff_var.varname

				To restrict the source of variable, define the attribute "from" in the shortcode with any of following values: get, post, session, or cookie. For example, to create the javascript variable: varname, only if exist a session variable with the same name, insert the shortcode: [CP_CALCULATED_FIELDS_VAR name="varname" from="session"]

				The shortcode: [CP_CALCULATED_FIELDS_VAR] accepts two other attributes:

				Definig default values

				The "default_value" attribute allows to define the value used by default if there is not a parameter with the specified name, or session variable or cookie:

[CP_CALCULATED_FIELDS_VAR name="varname" default_value="mydefault"]

				If there is not a parameter, or session variable, or cookie, with the name "varname", the plugin will create the javascript variable with the name: cff_var["varname"], and value: "mydefault".

				Create direct variables

				The attribute: "value", allows to create a javascript variable with the name defined as attribute, and the value in the attribute: "value".

[CP_CALCULATED_FIELDS_VAR name="varname" value="myvalue"]

				After insert the shortcode to create the javascript variable, a valid equation would be: fieldname1*cff_var.varname

				Create a direct variable through the Forms Shortcode

				There is another way to create variables to be used in the equations, directly from the form's shortcode. All attributes in the shortcode, except the "id" that identifies the form, are converted in javascript properties of cff_var variables with global scope. The properties names correspond to the attributes' name, and their values, the attributes' values:

[CP_CALCULATED_FIELDS id="1" varname="varvalue"]

				It is possible create multiple variables, defining multiple attributes.

				The variables created through the form's shortcode have a particularity, for each global variable will be created another one with the structure: <variable name>_arr, for example: if the shortcode is:

				[CP_CALCULATED_FIELDS id="1" varname="varvalue"]

				The plugin will create the varaible, cff_var['varname'] (another valid notation would be cff_var.varname) value varvalue, and the varname_arr variable, whose value is a hash with the varvalue as one of their items.

				How to access to the value of the varname_arr?

				Simply should be called the varname_arr variable, using as the index, the form_identifier constant: fieldname1*varname_arr[form_identifier]

				Pay attention to this way to access to the variables generated through the form shortcode. If there are multiple shortcodes inserted in the same page, and all of them define a same variable, accessing to the variable name through the scheme: <variable name>_arr[form_identifier], each form will have its own value for the variable, because the cff_var['variable name'] will have only the latest value.

			

		

		
			

				Add-Ons

				The list of add-ons available in the plugin, appear in the "Add-ons area" of settings page of the plugin. For enabling the add-ons, simply should tick the corresponding checkboxes, and press the "Activate/Deactivate Addons" button.

				
				

			

		

		
			

				Server Side Equations add-on

Developer Version
Platinum Version

				The Server Side Equations add-on allows to define equations in the server side to protect the business logic, and call them with AJAX from the public form.

				The server side equations are defined from the settings page of the plugin, through the "Server Side Equations section".

				The server side equations are shared by all forms in the website, reducing the development time.

				
				

				Server Side Equations Structure

				The server side equations are implemented with PHP programming language. The equations should be entered below the line of comment: INCLUDE YOUR CODE FROM HERE.

				The equations should be defined into the GLOBAL array: "SERVER_SIDE_EQUATIONS", where the items' indexes are the names of the equations, and the items values are functions definitions with the code of the equations.

				For example, assuming you want to implement an equation that calculate the square root of a number, a possible equation would be:

				$GLOBALS['SERVER_SIDE_EQUATIONS']['square_root_equation'] = function($number){return sqrt($number);};

				The file with the equations can be edited directly with the text editor of your choice. The files with the equations are located in the "/wp-content/plugins/calculated-fields-form/addons/serverside.addon/" directory, and their names have the structure: server-side-equations_#.php

				Pay attention: The plugin includes a mechanism to prevent overwrites the "server-side-equations_#.php" file in the update process. However, I recommend to copy the file into the "/wp-content/uploads/calculated-fields-form" directory, and the plugin would use this copy of the file instead.

				

 The server-side equation must always return a result.
				

				How the equations are called?

				The add-on includes a new operations module with the operation: SERVER_SIDE for calling the server side equations using AJAX.

				
				

				The "SERVER_SIDE" operation requires at least one parameter, the name of the server side equation (following with the previous example, the first parameter would be: 'square_root_equation') and the other parameters would be the parameters required by the server side equation.

SERVER_SIDE('square_root_equations',4)

the result would be 2

				To get the square root of a field in the form, for example, the fieldname1, the equation would be:

				SERVER_SIDE('square_root_equations',fieldname1)

				Calculating the final price with a server side equation

				The Server Side Equations add-on includes a new section in the form's settings to allow calculate the final price through a server side equation, after the form be submitted.

				
				

				To calculated the final price with a server side equation:

				Tick the checkbox: "Evaluate the final cost with a server side equation, once the form be submitted"

				Enter the server side equation call with the format: equation_name(fieldname1, fieldname2, fieldname3)

				Related Information....

					BLOG: The use of Server Side equations
	BLOG: Is it possible to collect the user information without submitting the form? Not by default....but yes, you can
	BLOG: Implementing a posts filter using the Calculated Fields Form plugin
	BLOG: Cases of use for a delivery project, transportation or any other project based on distance calculation with Bing Maps

			

		

		
			

				Users Permissions add-on

Developer Version
Platinum Version

				The new add-on: "Users Permissions", allows restrict the access to the forms, and associate the submitted information to the submitter.

				The options to restrict the access to the form are: Only for registered users, for registered users with specific roles, or allow the access to the form only to specific users.

				With the "Users Permissions" add-on it is possible restrict the number of submissions to only one by user.

				The add-on includes a new shortcode: [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST], to display the list of submissions belonging to an user. If the shortcode is inserted without attributes, the list of submissions will include those entries associated to the logged user. This shortcode accepts the attributes: id, for the user's id, and login, for the username (the id attribute has precedence over the login), in whose case the addon will list the submissions of the user selected, furthermore it is possible restrict the list to a specific form using the attribute: formid="#", where # should be replaced by the form's id. Additionally, it is possible to decide the number of items per page (10 by default), defining the "events_per_page" attribute through the shortcode, ex: [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST events_per_page="20"]

				

				Pay attention: If the page with the shortcode is visited by an user with administrator role, then he/she will have access to the other users' submissions and will have permission to edit or delete them.

				Other attributes supported by the [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST] shortcode:

					
						from: a text with date format (yyyy-mm-dd) to display the list of submissions from a specific date. [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST from="2018-04-09"]

						The from attribute accepts relative dates, like from="+3weeks -1day", from="-1year", etc.

					
	
						to: a text with date format (yyyy-mm-dd) to display the list of submissions until a specific date. [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST to="2018-04-09"]

						The to attribute accepts relative dates, like to="+2months +15days", to="-1week", etc.

					
	order: used for ordering the submissions in ascending or descending order. The accepted values are: ASC and DESC. [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST from="2018-01-01" to="2018-04-09" order="DESC"]
	limit: used to display a specific number of submissions. [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST limit="10"]
	no_filter: hides the filtering options at the top of the submission table for non-administrator users. [CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST no_filter="1"]

				The add-on allows to define the summary of the submitted data that will displayed in the list of submissions. Enter the summary's structure in the "Summary" attribute. In the summary can be use all the special tags, available for the notification emails, and the thank you pages.

				Note, that it is possible to define the structure of data directly through the shortcode, and this takes precedence over the "Summary" attribute. Ex:

				[CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST]
<p><%fieldname1_label%>: <i><%fieldname1_value%></i></p>
[/CP_CALCULATED_FIELDS_USER_SUBMISSIONS_LIST]

				The add-on allows to assign permissions for "edit" or "delete" the entries. Actually, the submissions are not deleted, or its data modified from these actions, the real control over the data is only for the website's administrator. In the first case, the submission will be disabled, and will be hidden from the list of user's submissions, but the submission is always accessed by the website administrator through the messages section, and if the data are edited, the original entry will be disabled, and a new entry is generated and associated to the user.

				There are other features included by this add-on, the "Messages" section is modified to include in the list of submissions the name of the submitter, furthermore, includes a new input field for filtering the events by users.

				

				Related Information....

					BLOG: Controlling the access to the forms

			

		

		
			

				Users Registration Form add-on

Developer Version
Platinum Version

				The new add-on: "User Registration Form", allows allows register new users through a form created with the Calculated Fields Form plugin.

				The add ons allows even create the users' metadata required by other plugins.

				

				Add-on settings

				Enabled: Allows to enable/disable the users registration through the form.

				Notification: Send a notification email to the new user, the website's administrator, both, or to none of them.

				User email field(required): name of field in the form for the user's email.

				User login field(required): name of field in the form for the user's login.

				User password field: name of field in the form for the user's password. If there is not a field for password it is generated dynamically.

				User nicename field: name of field in the form for the user's nicename.

				Display name field: name of field in the form for the user's display name.

				User url field: name of field in the form for the URL to the user's webpage.

				User role: select the role to apply the new users.

				Auto login: auto login of users after registration.

				Enable user after payment: creates the users disabled by default until completing the payment. Tick the checkbox in forms integrated with payment gateways. And if you want to create commercial users only.

				User metadata section. Allows to add pairs of input boxes for entering the metadata name, and the field's name corresponding to the user's metadata.

				Login required: Error message to display if the login is empty.

				Login exists: Error message to display if there is an user with the same login.

				Login too long: Error message to display if the login is longer than 60 characters.

				Email required: Error message to display if the email is empty.

				Email invalid: Error message to display if the value entered by the user has no valid email format.

				Email exists: Error message to display if there is an user with the same email.

				Nicename too long: Error message to display if the nicename is longer than 50 characters.

			

		

		
			

				Verification Code add-on

Developer Version
Platinum Version

				The "Verification Code" add-on allows verifying the user's email by sending a verification code and blocking the form's submission until the verification code is entered.

				When the user presses the submit button, the add-on will send to his/her email a verification code and will open a dialog to validate it.

 The form's submission is blocked until the user enters a valid code through the dialog.

				To activate the add-on, go to the settings page of the plugin through the menu option "Calculated Fields Form", tick the "CFF - Verification Code" add-on, and press the "Activate/Deactivate addons" button.

				The add-on includes a new section in the form's settings to configure it.

				Verification Code Settings:

 	Enable the verification code: enable/disable the verification code add-on into the form.
	Email field: the name of the email field in the form (fieldname#).
	Label text: title of validation dialog. In the label, you can enter the field's tag (Ex. <%fieldname1%>) to allow the user to know the email address where the plugin sent the verification code.
	Instructions text: text on dialog with the instructions for users.
	Verify button text: text of verify button.
	Resend button text: text of resending button.
	Email subject: subject of the email with verification code.
	Email message: text of the email with verification code. The tag would be replaced by the verification code.
	Sent code text: confirmation text.
	Required email text: the error message to display if the email is empty.
	Required code text: the error message to display if the verification code is empty.
	Invalid code text: the error message to display if the verification code entered by the user is incorrect.
	Expired code text: the verification code expires after 5 minutes. Enter the error message to display if the verification email entered by the user has expired.

			

		

		
			

				Unique Fields Values add-on

Platinum Version

				The "Unique Fields Values" add-on verifies that the values entered by users have not been used in previous submissions. It allows to enter simple and complex verification rules (one or multiple fields separated by comma symbols).

				When the user presses the submit button, the add-on verifies the previous submissions. If the field value (or combination of fields values) was used before, the add-on opens an alert with the error message. If everything is OK, the form is submitted properly.

 To activate the add-on, go to the settings page of the plugin through the menu option "Calculated Fields Form", tick the "CFF - Unique Fields Values" add-on, and press the "Activate/Deactivate addons" button.

				The add-on includes a new section in the form's settings to configure it.

 Unique Fields Values Settings:

 	Enable the Unique Fields Values in the form: enable/disable the add-on into the form.
	Condition to validate: the field's name (fieldname#) or fields' names separated by commas.
	Error message: error to display if there is a previous submission with the same field's value or fields' values.
	From (optional): allows configuring a time interval where verify the submissions.
	To (optional): allows configuring a time interval where verify the submissions.

			

		

		
			

				Upload add-on

Platinum Version

				The "Upload Files" add-on allows to add the uploaded files through the forms to the Media Library, and access to them from the pages and posts of website.

				Furthermore, it allows to include the support of new mime types, than files format supported by default by WordPress.

				

				To add the uploaded files to the "Media Library" ticks the checkbox: "Add the uploaded files to the media library".

				WordPress supports some specific mime types, for supporting new mime types, you simply should enter the files' extensions separated by comma.

			

		

		
			

				Signature add-on

Platinum Version

				(Platinum version of the plugin)

				

				The add-on converts the form fields selected in "Signature" fields, allowing the users to sign with the mouse or directly in the touchscreens.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Signature", and press the "Update" button.
				

				

				
				From the form's settings, selects the fields to convert in Signature fields. It is possible convert multiple fields in the form in signature fields.
				

				Signature settings:

				Color: the color code for signatures. For example: #000000

				Line thickness: an integer number defining the line thickness of the signature.

				Show guideline: checkbox to include or not a guideline in the signature fields.

				Guideline color: the color code for guideline. For example: #000000

			

		

		
			

				iCal add-on

Platinum Version

				

				With the iCal addon the users will receive an iCal file as part of the confirmation email after the form submission. The iCal file allows to be imported into most popular calendars like Outlook and Google Calendar.

				To activate the new iCal attachment add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF - iCal Export Attached", and press the "Activate/Deactivate addons" button.

				

				With the add-on activated go to the form settings page and at the bottom of that page you can configure the iCal file that will be attached into the emails. You will need to specify the ID of the field that contains the date and you can modify the iCal content and time conversion settings if needed.

				In the settings area the following information is needed to activate and setup the addon:

				

					ID of the field that contains the date: ID of the field that contains the date, must be a date field. Example: fieldname1. If empty the iCal won't be generated.
	iCal entry summary: Summary of the iCal event. You can get the field IDs/tags from the form builder to customize this field with the submitted data.
	iCal entry description: Description of the iCal event. You can get the field IDs/tags from the form builder to customize this field with the submitted data.
	iCal timezone difference vs server time: If you see differences in the selected and imported dates in the calendar then use this field to adjust that difference.
	Observe daylight saving time?: Indicates if the daylight saving time will be taken in account.
	Daylight saving time zone: If the daylight saving time will be used then indicate here the zone used as reference.

				When enabled, after clicking the Calculated Fields Form submit button, an iCal file will be generated and attached to the emails.

			

		

		
			

				CSV Generator add-on

Platinum Version

				

				The CSV Generator add-on allows to export dynamically the information collected by the form to a CSV file, and send it as attachment in the notification emails.

				To activate the CSV Generator add-on, visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF - CSV Generator", and press the "Activate/Deactivate addons" button.

				

				After activated the add-on go to the form settings, pressing the "Settings" button associated to the form, and configure the add-on as follows:

				

					Enabled: for enabling the CSV generator in the form.
	Generate files after payment confirmation: generates the CSV file or appends the submission to an existing file after receiving the payment confirmation from the payment gateway.
	Directory: enter the directory where storing the CSV file. This directory must be into the /wp-content/uploads directory. If the directory does not exists, the plugin creates it.
	File: allows configure the add-on to generate a new CSV file per submission, or for appending the a new row to an existing CSV file.
	File box: enter the file's name if the "append" choice is selected.
	Include fields: allows to select the fields to export to the CSV file (every collected field or only some of them).
	Send file by email: allows to configure the add-on for attaching the files to the notification emails and the copies to the users or not.

				Related Information....

					BLOG: Storing the information collected by the form in a CSV file and import the file into Google Sheet

			

		

		
			

				PDF Generator add-on

Platinum Version

				

				The PDF Generator is an experimental addon based on the dompdf api that allows to generate PDF files with the information collected by the forms, and send them as attachment of notification emails.

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-PDF Generator", and press the "Activate/Deactivate Addons" button
				

				

				
				The PDF Generator add on shown a new section in the form's settings for entering the HTML code with the file's structure, and input box for entering the file name.
				

				Note: into the file's structure you can use the same special tags supported by the thank you pages and notification emails.

				The add-on attaches the PDF files to the notification emails. However, it is possible to include the tag: <%pdf_generator_url%> into the notification emails and thank you pages. The tag would be replaced with the URL to the PDF file.

				Related Information....

					BLOG: PDF Generator add-on, tips and tricks
	BLOG: Generating PDF files at runtime with the information collected by the form using FormStack (formerly WebMerge)
	BLOG: Generating PDF files at runtime with PrintFriendly
	DOC: Special tags to use into the PDF structure

			

		

		
			

				WooCommerce add-on

Developer Version
Platinum Version

				The developer version of the plugin includes the WooCommerce add-on, to integrate the forms created by the "Calculated Fields Form" with the WooCommerce products. The add-on inserts an additional metabox in the WooCommerce products, with multiple settings fields:

					Enter the ID of the form: Allows select the form that will be associated to the product.
	Calculate the product price through the form: Allows calculate the price of the products through the form.
	Minimum price allowed: The minimum price applied to a product.
	Activate the summary: Allows customize the fields included in the cart page of WooCommerce.
	Summary title: Enter the summary title.
	Field for weight: Enter the form's field corresponding to the product's weight.
	Field for length: Enter the form's field corresponding to the product's length.
	Field for width: Enter the form's field corresponding to the product's width.
	Field for height: Enter the form's field corresponding to the product's height.
	Field for quantity: Enter the form's field corresponding to the product's quantity. It will be associated to the quantity box of the product.
	Field for visual price: This attribute is optional. If you want the price to display in the products' pages be different to the default price, or the calculated price, enter the corresponding form's field. The visual price won't be the real product's price, and won't added to the cart or orders.
	Summary: Define the summary, are accepted all special tags supported by the notification emails and the thank you page.

				Note: If you want calculate the price of products through the form, will be required that you select the field of the price in the attribute: "Request cost" in the form's settings.

				Note 2: The fields for weight, length, width, and height, can be required to calculate the shipping cost by the "WooCommerce Table Rate Shipping" plugin.

				

				The add-on generates two global variables, for the id and price of the product where the form is inserted, called: woocommerce_cpcff_product and woocommerce_cpcff_product_price respectively.

				For example, to duplicate the regular price of the product, insert a calculated field in the form with the following code as its equation:

				
woocommerce_cpcff_product_price*2

				Related Information....

					BLOG: Integrating the forms with the WooCommerce products
	DOC: Special tags to use into products summaries

			

		

		
			

				Easy Digital Download add-on

Platinum Version

				The Platinum version of the plugin includes the Easy Digital Downloads add-on, to integrate the forms created by the "Calculated Fields Form" with the Easy Digital Downloads products. The add-on inserts an additional metabox in the EDD products, with multiple settings fields:

					Enter the ID of the form: Allows to select the form that will be associated to the product.
	Calculate the product price through the form: Allows calculate the price of the products through the form.
	Minimum price allowed: The minimum price applied to a product.
	Activate the summary: Allows customize the fields included in the cart page of Easy Digital Downloads.
	Summary title: Enter the summary title.
	Summary: Define the summary, are accepted all special tags supported by the notification emails and the thank you page.

				Note: If you want calculate the price of products through the form, will be required that you select the field of the price in the attribute: "Request cost" in the form's settings.

				

				
				Some considerations:

				
	The form will be included only in the products pages, and not in the list of products inserted through the [downloads] and [edd_downloads] shortcodes.
	It is not recommended the use of the add-on in products where is enabled variable pricing.
	The form disables the AJAX submission.
	After purchases the users will be redirected to the checkout page.
	Every purchase will be added as a separated item in the shopping cart, disabling the quantity box.
	Replaces the label of the purchase button, with the label of the submit button in the form's settings.

				

				Related Information....

					BLOG: Calculating download prices in the "Easy Digital Downloads" plugin at runtime

			

		

		
			

				The Events Calendar add-on

Platinum Version

				

				The platinum version of the plugin includes the "The Events Calendar" add-on. It allows to create new events, venues, event categories, tags, and organizers with the information collected by the form.

				After activating the add-on from the menu option "Calculated Fields Form > Addons":

				

				The add-on displays a new metabox in the form's settings, to create the relationship between the form's fields and the events attributes:

				

				The events attributes accept fields' names (Ex. fieldname1) or its values directly.

					Enable The Events Calendar: enable/disable the Events Calendar integration with the form.
	Create events after payment confirmation: create a new event after every submission or after receiving the payment confirmation in forms integrated with payment gateways.
	Title: event title
	Description: event description.
	Excerpt: event summary.
	Image: image url or field's name to an "Upload File" field.
	Event Status: allow publish the event directly, or create the event in a different status to be reviewed and approved.
	URL: additional URL to the event.

				Date/Time related attributes, like Start date/time, End date/time, All day event, Duration, and Timezone.

				Event cost attributes, like Cost, Currency symbol, and Currency symbol position.

				It is possible to associate event location, event category, tags, and organizer to the event or not. Also, you can associate existing venues, categories, tags, and organizer, or create new ones.

				

				

				

				

			

		

		
			

				MailPoet add-on

Platinum Version

				

				The platinum version of the plugin includes the "MailPoet" add-on. It allows to add new subscribers to the MailPoet Mailing Lists (MailPoet Version 2 and MailPoet Version 3) with the information collected by the forms. The add-on adds a new metabox in the form's settings, to create the relationship between the form's fields and the data required by MailPoet:

				

					Firstname field: enter the name of the field in the form that collect the user's first name (this attribute is optional).
	Lastname field: enter the name of the field in the form that collect the user's last name (this attribute is optional).
	Email field: enter the name of the field in the form that collect the email (this attribute is required). It is possible to define multiple fields for emails to subscribe multiple users to MailPoet
	Mailing lists: this section includes an option for each mailing list active in MailPoet. It is possible pre-select the mailing list(s) to associate with the form, or allow the users select the mailing list by teirself. If the option to allow the users take the decision is selected, it is necessary insert a "HTML Content" field in the form, and enter in its content a DIV tag with an unique ID, and enter this ID into the "container" box, furthermore, it is possible configure the mailing lists as required fields in the form.

			

		

		
			

				AffiliateWP add-on

Platinum Version

				

				The platinum version of the plugin includes the "AffiliateWP" add-on. AffiliateWP is a WordPress plugin that gives the affiliate marketing tool needed to grow a business and make more money.

				The add-on is enabled through the settings page of the plugin, ticking the "CFF - Affiliate WP" checkbox and pressing the "Activate/Deactivate addons" button.

				

				The add-on allows to integrate the forms with the AffiliateWP plugin. It adds a new metabox in the form's settings, to activate the integration and define the description to use with referrals:

				

					Integrate the Affiliate WP with this form: Tick the checkbox to integrate the AffiliateWP plugin with the current form.
	Description: Enter the text to use as description of referrals in AffiliateWP.

					It is possible to use the special tags supported by the notification emails and the thank you pages with the referrals' descriptions.
	Context: Enter the text to use as the context for the referral.

			

		

		
			

				Google Analytics add-on

Platinum Version

				

				* Google Analytics is a third party service not related to our company.

				The platinum version of the plugin includes the "Google Analytics" add-on to generate the usage reports in "Google Analytics" about the interactions of users with the form. The add-on adds a new metabox in the forms settings, to configure the events and exceptions that are sent to "Google Analytics" and when:

				

					Enter the property ID: property ID generated in Google Analytics.
	Send Fields section: enter the form's fields (fieldname#), and select the information to be sent to Google Analytics, and when.

				Sends a hit of "Event" type for every onfocus event triggered by the field. The hits can include the field's label, and it is possible to decide if send only one hit by field, or for each "onfocus" event in the field. The hits are sent with the event's category: "form", and the event action: "focus", the label of the event includes the form's id, the field's name, and the field's label, if the corresponding option was ticked.

					Send Events section: tick the checkbox corresponding to each event to be reported to Google Analytics.

				Sends a hit of "Event" type if the form is loaded, or for every action: "Next Page", "Previous Page", or "Submit". The hits are sent with the event's category: "form", and the events' actions: "load", "next page", "previous page", and "submit", respectively. Each event includes a label with the form's id, and in case of next and previous page events, the page number. The events "next page" and "previous page" allow to know the pages that are reached by the users, and identify problems in the form's structure. The "submit" event allows to know how many users complete the form, comparing the amount of "submit" events with the "load" events.

					Send Exceptions section: tick the checkbox corresponding to the exceptions to be reported to Google Analytics.

				Sends a hit of "Exception" type in every failed submission by an incorrect "CAPTCHA" code. It allows to know if the "CAPTCHA" images are difficult to read, and modify its settings to solve the issue.

			

		

		
			

				Google Places add-on

Platinum Version

				

				The add-on integrates the input fields in the form with the Google Places API to autocomplete the address entered by the users. The user only need to start typing the address, and the add-on displays a list of addresses matching with the typed text.

				* Google Places is a third party service not related to our company. Google Places may charge for their service.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Google Places", and press the "Update" button...
				

				

				
				...the plugin displays a new dialog for entering the Google API Key.
				

				

				
				From the form's settings, selects the fields to associate with the Google Places API. It is possible apply the Google Places API to multiple fields in the form.
				

				Furthermore it is possible restrict the search to one or multiple countries (maximum 5). The countries must be passed as as a two-character code, separated by comma.

				Related Information....

					BLOG: Cases of use for a delivery project, transportation or any other project based on distance calculation
	DOC: Distance opertions module

			

		

		
			

				Autocomplete Places add-on

Platinum Version

				

				The add-on integrates the input fields in the form with the Photon API to autocomplete the address entered by the users. The user only need to start typing the address, and the add-on displays a list of addresses matching with the typed text.

				* If you are using the default URL photon.komoot, it is a third party service not related to our company, and they decide the terms and conditions for the use of the API.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Autocomplete Places Integration", and press the "Activate/Deactivate Addons" button...
				

				

				
				...the plugin uses by default the photon.komoot api, however if you prefer to use your own photon installation, enter its URL in this section.
				

				

				
				From the form's settings, selects the fields to associate with the Autocomplete Places. It is possible apply the Autocomplete Places to multiple fields in the form.
				

				Related Information....

					BLOG: Cases of use for a delivery project, transportation or any other project based on distance calculation
	DOC: Distance opertions module

			

		

		
			

				reCAPTCHA add-on

Developer Version
Platinum Version

				The add-on allows to protect the forms using the Google reCAPTCHA instead of the captcha distributed with the plugin. reCAPTCHA is more visual and intuitive than the traditional captcha, with just a single click the users confirm they are not a robot.

				reCAPTCHA (its official name is No CAPTCHA reCAPTCHA) as they define themselves:

				reCAPTCHA is a free service that protects your website from spam and abuse. reCAPTCHA uses an advanced risk analysis engine and adaptive CAPTCHAs to keep automated software from engaging in abusive activities on your site. It does this while letting your valid users pass through with ease.

				reCAPTCHA offers more than just spam protection. Every time our CAPTCHAs are solved, that human effort helps digitize text, annotate images, and build machine learning datasets. This in turn helps preserve books, improve maps, and solve hard AI problems.

				To use reCAPTCHA in your forms, activate the add-on in the the settings page of the plugin, through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF - reCAPTCHA", and press the "Update" button.

				* Google reCaptcha is a third party service not related to our company.

				The activation of reCAPTCHA displays a new section for entering the site key, and the secret key, two keys provided by Google reCAPTCHA to protect the website, and validate the forms submissions respectively.

				If the site key and secret key were generated for an invisible reCAPTCHA, it si possible to tick the "Is it a key for invisible reCAPTCHA?" checkbox in the add-on settings to insert reCAPTCHA as invisible.

				

				...through the form's settings it is possible to select the language to apply (English by default).

				

				
					
						In order to apply the reCAPTCHA to a form, you need to select the "Yes" option in the "Use Captcha Verification?" attribute of the form settings (https://cff.dwbooster.com/documentation#captcha-settings). The reCAPTCHA add-on will replace the captcha in the form with the reCAPTCHA variant.
					

				

				Related Information....

					DOC: Captcha section in the form's settings

			

		

		
			

				SalesForce add-on

Developer Version
Platinum Version

				The add-on allows create new leads in the SalesForce account with the data submitted by the forms (https://www.salesforce.com).

				* SalesForce is a third party service not related to our company. SalesForce may charge for their service.

				To create new leads in SalesForce with the data submitted by a form, be sure that the SalesForce account has enabled the Web-to-lead option, and then go to the form's settings:

					Enter the OID (Organization ID)
	For debugging the lead creation, tick the "Enabling debug" option, and enter the email address where receive the information. For production, untick the debugging option.
	Press the "Add attribute" button, select the Lead attribute, and enter a fixed text, or the name of the field in the form (fieldname#)

				Note: The Add-on includes the list of predefined attributes of Leads, but it is possible to enter custom attributes too.

				

				Related Information....

					BLOG: Generating new SalesForce leads

			

		

		
			

				WebHook add-on

Developer Version
Platinum Version

				The add-on allows posting the submitted information by the forms to WebHooks URLs. With the WebHook add-on it is possible integrate the forms created by the plugin with services like Zapier, Microsoft Flow, or IFTTT. Zapier, Microsoft Flow, and IFTTT connect services as important and popular as Zoho CRM, Dropbox, Mailchimp, Evernote, Google Drive, Facebook, Twitter, and more than 300 services(Zapier apps, Microsoft Flow, IFTTT)

				Use this add-on is as simple as entering the WebHooks URLs, through the CFF-WebHook section in the forms settings, and tick the checkbox for sending to the webhook all fields submitted by the form, or define only some of fields. To associate multiple WebHooks to the form, simply press the "Add new url" button, and define the data for the new webhooks.

				

				Note: Concerning to Zapier service, select Webhook as the Trigger app, and "Catch Hook" as the trigger for this app. For Microsoft Flow, select Request

				

				* Zapier is a third party service not related to our company. Zapier may charge for their services.

				* Microsoft Flow is a third party service not related to our company. Microsoft Flow may charge for their services.

				* IFTTT is a third party service not related to our company. IFTTT may charge for their services.

				Additional details reading a case of use in the following blog post: WebHook Add On

				Related Information....

					BLOG: Integrating the form with Google Sheet using Zapier as connector

			

		

		
			

				WebMerge add-on

Platinum Version

				

				The add-on sends the information collected by the form to the FormStack documents service (formerly WebMerge) to generate a PDF file or Office document at runtime. Furthermore the generated document can be send to the user (https://www.webmerge.me/)

				* FormStack documents is a third party service not related to our company. FormStack documents may charge for their service.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-WebMerge", and press the "Update" button...
				

				

				
				After activate the WebMerge add on, the form settings will include a new section for entering the URL to the FormStack document, and the correspondence between the variables in the document, and fields in the form.
				

				Pressing the "Add a New Document" button it is possible to associate multiple documents to a same form, and pressing the "Add Field" button it is possible associate multiple variables and form fields to a document.

				

				
				Each document in FormStack has its own URL with the corresponding ID and Key code.
				

				Additional details reading a case of use in the following blog post: Generating PDF files at runtime with the information collected by the form

				Using the WebMerge or WebHook add-on to integrate the form with Silverpop (Today IBM Watson Campaign Automation)

				https://www.silverpop.com

					
						In Silverpop (SP), build and publish a landing page form with all fields you want to use.

						From the web form properties, find the block of code labeled "External form post"

						

					
	
						If the form tag has a structure similar to:
<form method="post" action="http://mycompany.mkt9999.com/subgroup/myform" pageId="12345678" siteId="123456" parentPageId="12345678">

						Enter as the WebMerge (FormStack) document the URL (or the WebHook URL in the case of WebHook add-on): http://mycompany.mkt9999.com/myform?pageId=12345678&siteId=123456&parentPageId=12345678

					
	
						Copy the "name" attributes of every field in the form, including the "hide" fields, to create the correspondence between the fields in the Silverpop form, and the name of fields in the form created with our plugin.

						For example, in the tag:
<input type="text" name="Last Name" id="control_COLUMN4" class="textInput defaultText" style="margin: 0 3px 5px 3px; height: 20px; width: 294px;">
 the field's name would be: Las Name
						

						

					

				Related Information....

					BLOG: Generating PDF files at runtime with the information collected by the form using FormStack (formerly WebMerge)
	BLOG: PDF Generator add-on, tips and tricks
	BLOG: Generating PDF files at runtime with PrintFriendly
	DOC: PDF Generator add-on

			

		

		
			

				Sendinblue Contact add-on

Platinum Version

				

				Sendinblue is a SaaS solution for relationship marketing that offers a cloud-based marketing communication software suite with email marketing, transactional email, marketing automation, customer-relationship management, landing pages, Facebook ads, retargeting ads, SMS marketing, and more.

				The add-on adds/updates Sendinblue contacts with the information collected by the form.

				* Sendinblue is a third party service not related to our company. Sendinblue may charge for their service.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Calculated Fields Form/Addons", tick the checkbox: "CFF-Sendinblue Contact", and press the "Activate/Deactivate Addons" button...
				

				

				
				After activate the Sendinblue add on, the form settings will include a new section for entering the Sendinblue API Key and mapping the Sendinblue attributes and form fields.
				

				Sendinblue Contact Settings

					Activate Sendinblue: Activate/Deactivate Sendinblue in the form.
	Sendinblue API Key: Enter the Sendinblue API Key.
	Update existing contacts: Tick the checkbox to update the existing contact entries.
	Sendinblue-attributes/Fields-names mapping: Enter Sendinblue attributes, and fields' names in fieldname# format.
	Contact lists: Select the contact lists where adding the contact.

			

		

		
			

				PrintFriendly add-on

Platinum Version

				

				The add-on integrates the form with the PrintFriendly API to generate a PDF file after the form be submitted, and attach the resulting file to the notification emails (https://www.printfriendly.com/)

				* PrintFriendly is a third party service not related to our company. PrintFriendly may charge for their service.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-PrintFriendly", and press the "Activate/Deactivate Addons" button...
				

				

				
				After activate the add-on will be shown a new section in the settings page of the plugin for entering the PrintFriendly API Key.
				

				

				
				The PrintFriendly add on shown a new section in the form's settings for entering the HTML code with the file's structure, and input box for entering the text to display as header, and another input box for entering the URL to the CSS file to define the file's design.
				

				Note: into the file's structure you can use the same special tags supported by the thank you pages and notification emails.

				Related Information....

					BLOG: Generating PDF files at runtime with PrintFriendly
	BLOG: PDF Generator add-on, tips and tricks
	BLOG: Generating PDF files at runtime with the information collected by the form using FormStack (formerly WebMerge)
	DOC: PDF Generator add-on

			

		

		
			

				DropBox Integration add-on

Platinum Version

				The "DropBox Integration" add-on allows to copy or move the uploaded files through the forms to a DropBox.

				* DropBox is a third party service not related to our company.

				

				Enter the App Key and App Secret of your DropBox App.

				To remove the copies of files from the WordPress website, tick the checkbox: "Delete the local copy of file".

				Note: To copy the files to the DropBox account is required create a DropBox App, and generate a token access.

				
					Access your account, to the reserved area where configure an App: https://www.dropbox.com/developers/apps/create

					

					
						
	Select the "Dropbox API" option.
	Select the "App folder" option.
	Enter the application name.
	Press the "Create app" button.

					
					In the next screen enter the Redirect URI

					And copy the App Key and Secret and enter them in the add-on attributes.

					

					Finally, select the required persmissions from the permissions tab.

					

				

			

		

		
			

				ip2location add-on

Platinum Version

				The add on integrates the Calculated Fields Form with the ip2location databases to identify additional information of users based on their IP, as: Country, City Name, Coordinates, Weather Station, Time Zone, ZIP Code, etc...

				* ip2location is a third party service not related to our company. ip2location may charge for their databases.

				Note: Requires PHP 5.3 and over.

				

				Uplods the ip2location database's files to the correct location in the webserver (/wp-content/uploads/), and then, enters the files' names in the add on settings

				Tick the checkboxes of the information you want get of users.

				If has been selected the option to include the users information in the notification emails, and the add-on is enabled, the notification email will include all extracted data.

			

		

		
			

				MailChimp add-on

Platinum Version

				

				The add-on creates new members in the MailChimp service with the information collected by the forms in the website: www.mailchimp.com.

				MailChimp is an online email marketing solution to manage subscribers, send emails, and track results.

				* MailChimp is a third party service not related to our company. MailChimp may charge for their service.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-MailChimp", and press the "Update" button...
				

				

				
				After activate the MailChimp add-on, the form settings will include a new section to create the correspondence between the signup form associated to a list in MailChimp, and the form fields in the form created with the "Calculated Fields Form" plugin.
				

				

					Enter the API Key.
	Press the "Get Lists" button. The action generates a list with all "Lists" associated to the MailChimp account.
	Select the list and press the "Get Fields and Groups" button. The action displays multiple input fields, for connecting the fields in the form with the fields in the signup form of to the list, and the interests groups defined in MailChimp, that are displayed in the public form too to be selected by the users.
	Enter multiple tags separated by comma signs, in case you want to assign tags to the new members.
	Selects the status of new members. If pending is selected MailChimp will send an email to the new members with a confirmation link, and they would be added to the campaings only after visiting the confirmation links.

				Related Information....

					BLOG: MailChimp Integration

			

		

		
			

				Mautic add-on

Platinum Version

				

				The add-on creates new contacts (or update the existent ones) in the Mautic website with the information collected by the forms in the website.

				Mautic offers the first open marketing cloud, enabling companies to connect all their digital properties and channels into a seamless customer experience.

				* Mautic is a third party service not related to our company. Mautic may charge for their service.

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Mautic", and press the "Activate/Deactivate addons" button...
				

				

				
				After activate the Mautic add-on, the form settings will include a new section to create the relationship between the fields in the Mautic form and the fields in the form created with the "Calculated Fields Form" plugin.
				

				

					Enable the integration with the Mautic form.
	Enter the URL to the Mautic website.
	Enter the id of the Mautic form.
	Press the "Add Attribute" button to create display the pair of box for entering the name of the field in the Mautic form at left, and the name of the field in the CFF form at rigth (Repeat the process for every pair of fields).

			

		

		
			

				HubSpot add-on

Platinum Version

				

				The add-on creates/updates contacts in the HubSpot website with the information collected by the forms on the website.

				HubSpot is a developer and marketer of software products for inbound marketing and sales.

				* HubSpot is a third party service not related to our company. HubSpot may charge for their service.

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-HubSpot", and press the "Activate/Deactivate addons" button...
				

				

				
				After activate the HubSpot add-on, the form settings will include a new section to create the relationship between the HubSpot attributes and the fields in the form created with the "Calculated Fields Form" plugin.
				

				

					Enable the integration with the HubSpot form.
	Select the integration mechanism. The possible alternatives are Private Apps or API Key. The API Key integration method will be disabled in the next months.
	Enter the HubSpot Access Token for the Private Apps mechanism or the Api Key.
	Enter the fields' names corresponding to the attributes to populate in the HubSpot contact.

				Related Information....

					BLOG: HubSpot Integration

			

		

		
			

				Emma add-on

Platinum Version

				Emma's digital marketing platform makes it easy to create beautifully designed emails that drive results. It helps to plan, execute, and optimize campaigns to hit the business goals faster.
				

				The add-on adds new members to the Emma's digital marketing platform with the information collected by the forms in the website.

				

				* Emma is a third party service not related to our company. Emma may charge for their service.

				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Emma", and press the "Update" button...

				

				After activate the Emma add-on, would be available a new section for entering the "Account ID", "Public API Key", and "Private API Key" associated to the Emma account.

				

				The Emma add-on includes a new section in the form's settings to create the relationship between the Emma fields and form's fields (press the "Get Fields" button to get the complete fields list), and select the Emma groups where to add the new members (press the "Get Groups" button to get the complete list of groups).

				

			

		

		
			

				Twilio add-on

Platinum Version

				The Twilio service allows sending messages (SMS) to mobile phones around the world.
				

				The add-on integrates the forms with the Twilio service for sending notification messages (SMS) after submit the forms.

				

				* Twilio is a third party service not related to our company. Twilio may charge for their service.

				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Twilio", and press the "Activate/Deactivate addons" button...

				

				After activate the Twilio add-on, would be available a new section section in the form's settings for entering the required data.

				

				The add-on settings are:

				Twilio enabled: for enabling/disabling the integration with the form.

				Account SID: enter the Account SID provided by Twilio.

				Authentication Token: enter the Authentication Token provided by Twilio.

				From Phone Number: enter the phone number used as the "Origin" of SMS (enter a valid phone number including the country code).

				To Phone Number: enter the phone numbers (separated by comma symbols) where to send the SMS (enter a valid phone number including the country code).

				Message: enter SMS content (it is possible to use the same special tags than in the notification emails).

				For sending a SMS to the phone number entered through the form

				To Phone fields: enter the names of phone fields inserted in the form (fieldname#, separated by comma symbols).

				Message: enter SMS content (it is possible to use the same special tags than in the notification emails).

			

		

		
			

				PayPal Pro add-on

Platinum Version

				

				With Payment Form for PayPal Pro you can insert a form into a WordPress website and use it to process credit card payments directly into your website without navigating to an external payment page.

				You can check the differences betwen PayPal Pro and PayPal Standard at https://www.paypal.com/webapps/mpp/compare-business-products

				For integrating PayPal Pro you must have a PayPal Pro account. In addition to that a SSL connection is also needed, the SSL connection isn't a technical requirement since the plugin can work without it but anyway it is strongly recommended for accepting credit cards into your website, otherwise the transactions won't be secure.

				In the settings area the following information is needed to activate and link the PayPal Pro account to the form:

					Enable PayPal Pro: Select "Yes" to enable PayPal Pro.
	PayPal Pro - API UserName: The API Username provided by PayPal into your account.
	PayPal Pro - API Password: The API Password provided by PayPal into your account.
	PayPal Pro - API Signature: The API Signature provided by PayPal into your account.
	PayPal Pro - Currency: The currency for the payments, a valid PayPal currency code, example: USD, CAD, AUD, GBP, ...
	Paypal Mode: Select "Sandbox" for testing purposes and "Production" for charging real payments.

				When enabled, the form on the public website will display an additional set of fields to request the data needed to process the payment, like for example the billing address, credit card details. This info is only for the payment processing, as mentioned it won't be stored into the website for security reasons.

				After the submission Once the payment is processed and the posted data (excluding the credit card related information) is saved into the WordPress database.

			

		

		
			

				PayPal Checkout add-on

Platinum Version

				

				PayPal Checkout is a more versatile payment gateway integration than PayPal Standard. It supports additional payment methods and allows users to complete the payment process before submitting the form.

				For integrating PayPal Checkout you need a PayPal Client ID and Secret Key. To get these credentials:

					Log in to the Developer Dashboard with your PayPal account.
	Under the DASHBOARD menu, select My Apps & Credentials.
	Make sure you're on the Sandbox tab to get the API credentials you'll use while you're developing code. After you test and before you go live, switch to the Live tab to get live credentials.

				To activate PayPal Checkout in your form, go to the menu option "Calculated Fields Form > Addons", tick the "CFF - PayPal Checkout" checkbox, and press the "Activate/Deactivate Addons" button.

				

				After activating the add-on, a new section will be displayed in the form settings for integration with PayPal Checkout. Go to the plugin settings and fill in the following attributes:

					Enable PayPal Checkout: Select "Yes" option.
	PayPal Checkout - Client ID: Client ID provided by PayPal into your account.
	PayPal Checkout - Secret Key: Secret Key provided by PayPal into your account.
	PayPal Checkout - Currency: The currency for the payments, a valid PayPal currency code, example: USD, CAD, AUD, GBP, ...
	Paypal Mode: Select "Sandbox" for testing purposes and "Production" for charging real payments.

				Please note that you must have selected the field containing the price through the "Request cost" attribute in the payment configuration section.

				The form on the public website will display an additional set of buttons with the available payment methods. They may vary from user to user depending on their country or the device used to fill in the form.

				

			

		

		
			

				Authorize.Net Server Integration Method (www.authorize.net) add-on

Platinum Version

				

				The Authorize.net Server Server Integration Method (Authorize.net SIM) is a hosted payment processing solution that
 handles all of the steps in processing a transaction, including:

 	Collecting customer payment information through a secure, hosted form
	Generating a receipt to the customer
	Securely transmitting to the payment processing networks for settlement
	Funding of proceeds to the merchant's bank account
	Securely storing cardholder information

 Authorize.net SIM is an ideal integration solution because merchants are not required to collect,
 transmit, or store sensitive cardholder information to process transactions. Additionally,
 Authorize.net SIM does not require merchants to purchase and install a SSL or TLS digital certificate,
 reducing the complexity of securely handling and storing cardholder information,
 simplifying compliance with the Payment Card Industry (PCI) Data Security Standard. For more information go to www.authorize.net

				

				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Authorize.net Server Integration Method", and press the "Activate/Deactivate addons" button

				

				In the settings area the following information is needed to activate and link the Authorize.net Server Integration Method account to the form:

				Enable Authorize.net SIM?: Select "Yes" to enable the Authorize.net Server Integration Method payment.

				Mode: Change the mode between "test" for testing purposes and "production" for accepting real payments.

				API Username: Change this value with API Username received from Authorize.net.

				API Key: Change this value with API Key received from Authorize.net.

				Receipt URL: User will return here after a successfull payment. Important!: You must also configure the receipt link URL in the Merchant Interface.

				Cancel URL: User will return here if payment fails.

				In addition to the above required setting fields there are other fields to link the form fields to the Authorize.net payment form, like for example the client name, address, phone, email, ... These fields are optional. To link the fields you can indicate the ID of the field on the form that contains the related info. Sample values: fieldname1, fieldname2, ..

				
When enabled, the customer will be redirected to the Authorize.net Server Integration Method payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

		
			
				Stripe (www.stripe.com) add-on

Platinum Version

				

				The Stripe Payments addon provides a way to accept all major cards from customers around the world on web. This addon requires SSL on your website to be able to carry the transaction in a secure way. Credit card data is entered directly in the website without navigating to an external page.

				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Stripe Payment Integration", and press the "Activate/Deactivate add-ons" button...

				In the settings area the following information is needed to activate and link the stripe account to the form:

				

					Enable Stripe?: Select "Yes" to enable the stripe Payments Integration.
	Integration type: Cassic, or SCA versions for European sellers.
	Payment mode?: Sandbox for testing, or production mode.
	Stripe.com Publishable Key: Publishable Key you will find into your Stripe account.
	Stripe.com Secret Key: Secret Key you will find into your Stripe account.
	Language? The language of the Stripe interface.
	Ask for billing address? Tell Stripe to ask the billing address.
	Payment frequency? Select "one-time payments" or recurrent (subscription) payments.
	Trial period length in days for subscription payments: If recurrent payments is selected put here the trial period length in days if any.
	Plan name for subscription payments: If recurrent payments is selected put here the plan name for subscription payments.
	Subtitle for payment panel: Text to display in the pop-up dialog.
	URL of logo image: Image to load in the pop-up dialog.
	Metadata fields: fields' names separated by comma symbols.

				When enabled, after clicking the Calculated Fields Form submit button, a Stripe floating panel will be displayed to ask for the credit card data and process the transaction and after that the form submission will continue as usual keeping the customer all the time into your website.

			

		

		
			
				Stripe Checkout (www.stripe.com) add-on

Platinum Version

				

				The Stripe Payments addon provides a way to accept all major cards from customers around the world on web. The Stripe checkout accepts every payment method enabled in your Stripe account.

				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the "CFF-Stripe Checkout" checkbox, and press the "Activate/Deactivate add-ons" button...

				The add-on includes a new section in the form settings to configure the Stripe Checkout integration:

				

					Enable Stripe Checkout?: Select "Yes" to enable the stripe Payments Integration.
	Payment mode?: Sandbox for testing, or production mode.
	Stripe.com Publishable Key: Publishable Key you will find into your Stripe account.
	Stripe.com Secret Key: Secret Key you will find into your Stripe account.
	Language? The language of the Stripe interface.
	Ask for billing address? It tells Stripe to ask the billing address.
	Ask tax number? It tells Stripe to ask payer tax number.
	Automatic tax calculation? It tells Stripe to apply taxes based on the payer's country.
	Payment frequency? Select "one-time payments" or recurrent (subscription) payments.
	Trial period length in days for subscription payments: If recurrent payments is selected put here the trial period length in days if any.
	Plan name for subscription payments: If recurrent payments is selected put here the plan name for subscription payments.
	URL of product/store image: Image to load in the checkout page.
	Metadata fields: fields' names separated by comma symbols.

				When enabled, after clicking the Calculated Fields Form submit button, the plugin opens the Stripe Checkout page to complete the payment.

			

		

		
			

				Skrill (www.Skrill.com) add-on

Platinum Version

				

				The Skrill Payments addon provides a secure interface for accepting payments through a secure page. You can accept cards, more than 20 local payment methods and over 80 direct bank transfer connections with a single integration. Form more information go to https://www.skrill.com/en/merchants/

				

				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-Skrill Payment Integration", and press the "Activate/Deactivate addons" button.

				

				In the settings area the following information is needed to activate and link the Skrill account to the form:

				Enable Skrill Payments?: Select "Yes" to enable the Skrill Payments Integration.

				Skrill Email?: Emai linked to the Skrill merchant account, this will be the account that will receive the payments.

				Receipt URL: User will return here after a successfull payment.

				Cancel URL: User will return here if payment fails.

				Currency: Currency code for the received payment. example: USD, EUR, CAD, GBP

				When enabled, the customer will be redirected to the Skrill hosted payment form payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

		
			

				TargetPay (iDeal) add-on

Platinum Version

				

				The TargetPay addon provides integration with iDeal, the most popular Dutch payment method. The integration is made via TargetPay: https://www.targetpay.com/info/ideal?setlang=en

 With TargetPay you can set up iDEAL payments for your website easily. Acting as a "Payment Service Provider" it aggregates payments for a large number of webstores. The iDEAL platform combines the online banking systems of 10 of the largest Dutch banks (ABN AMRO, ASN Bank, Bunq, ING, Knab, Rabobank, RegioBank, SNS Bank, Triodos Bank and van Lanschot) into one payment method.

 After the consumer selects the iDEAL payment method the consumer's bank is selected. The actual payment then takes place in the bank's trusted online banking environment for which security is guaranteed by the bank. Through iDEAL buyer and seller are guaranteed a transparent transaction without hidden fees or other unpleasant surprises.

				

				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-iDeal TargetPay", and press the "Activate/Deactivate Addons" button.

				

				In the settings area the following information is needed to activate and link the iDeal-TargetPay account to the form:

				Enable iDeal-TargetPay?: Select "Yes" to enable the iDeal-TargetPay payment option for the form.

				RTLO Subaccount ID: Change this value with the account ID received from iDeal-TargetPay.

				If payment fails return to this page: Return page if the payment fails or is cancelled before completing it.

				Payments Mode: Change the mode between "test" for testing purposes and "production" for accepting real payments.

				When enabled, the customer will be redirected to the iDeal-TargetPay payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

		
			

				Mollie (iDeal) add-on

Platinum Version

				

				The Mollie addon provides integration with iDeal, the most popular Dutch payment method. The integration is made via Mollie: www.mollie.com.

				You're easily connected to iDEAL through Mollie without the dreaded technical and administrative hassle. The iDEAL platform combines the online banking systems of 10 of the largest Dutch banks (ABN AMRO, ASN Bank, Bunq, ING, Knab, Rabobank, RegioBank, SNS Bank, Triodos Bank and van Lanschot) into one payment method.

				After the consumer selects the iDEAL payment method the consumer's bank is selected. The actual payment then takes place in the bank's trusted online banking environment for which security is guaranteed by the bank. Through iDEAL buyer and seller are guaranteed a transparent transaction without hidden fees or other unpleasant surprises.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-iDeal Mollie", and press the "Update" button...
				

				

				In the settings area the following information is needed to activate and link the Mollie - iDeal account to the form:

				Enable iDeal-Mollie?: Select "Yes" to enable the Mollie - iDeal addon.

				Mollie API Key: The API Username provided by Mollie for your account, it may be the test key or the production key.

				If payment fails return to this page: If the payment fails the customer is redirected to the page indicated in this field.

				When enabled, the customer will be redirected to the Mollie - iDeal payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

		
			

				RedSys / Servired / Sermepa add-on

Platinum Version

				

				The RedSys / Servired / Sermepa addon provides a secure interface for accepting credit card payments through most banks in Spain (Sabadell, Banco Popular, BBVA, Santander, Bankia, Caixa, Bankinter, etc...). You can read more about RedSys at www.redsys.es.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-RedSys TPV", and press the "Update" button...
				

				

				In the settings area the following information is needed to activate and link the RedSys account to the form:

				Enable TPV: Select "Yes" to enable the RedSys TPV. If "Pay Later" or "PayPal" are also selected in this option, a radiobutton will appear in the form to select if the payment will be made with RedSys, with PayPal or if the form will be submitted without payment.

				CÓDIGO COMERCIO: The API Username provided by RedSys or your bank.

				CLAVE SECRETA: The API Password provided by RedSys or your bank.

				Mode: Select "Sandbox" for testing purposes and "Production" for charging real payments.

				When enabled, the customer will be redirected to the RedSys payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

		
			

				RedSys Bizum add-on

Platinum Version

				

				With Bizum you can send and receive money in less than 5 seconds. Securely, using only your phone number. You can read more about Bizum at bizum.es

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-RedSys Bizum", and press the "Activate/Deactivate Addons" button...
				

				

				In the settings area the following information is needed to activate and link the RedSys account to the form:

				Enable TPV: Select "Yes" to enable the RedSys Bizum. If "Pay Later" or "PayPal" are also selected in this option, a radiobutton will appear in the form to select if the payment will be made with Bizum, with PayPal or if the form will be submitted without payment.

				CÓDIGO COMERCIO: The API Username provided by RedSys Bizum or your bank.

				CLAVE SECRETA: The API Password provided by RedSys Bizum or your bank.

				Mode: Select "Sandbox" for testing purposes and "Production" for charging real payments.

			

		

		
			

				SagePay add-on

Platinum Version

				

				The SagePay addon provides a secure interface for accepting payments through SagePay. You can read more about SagePay at www.sagepay.co.uk.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-SagePay", and press the "Update" button...
				

				

				In the settings area the following information is needed to activate and link the SagePay account to the form:

				Enable SagePay?: Select "Yes" to enable the SagePay payment gateway.

				Vendor ID: The Vendor ID provided by SagePay.

				SagePay Encrypt Password: The SagePay Encrypt Password provided by PayTM.

				Mode: Select "Sandbox" for testing purposes and "Production" for charging real payments.

				When enabled, the customer will be redirected to the SagePay payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

		
			

				Sage Payment add-on

Platinum Version

				

				The SagePayments addon provides a secure interface for accepting payments through a secure SSL checkout system for both bankcard and virtual check transactions. All authorized and approved transactions will be delivered into your current bankcard and/or virtual check batches viewable within the Virtual Terminal for order processing and settlement. You can read more about Sage Payment Solutions at http://www.sage.com/us/sage-payment-solutions/accept-payments. The integration implemented in this addon is for Sage Payment Solutions >> Shopping ExpressPay

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", "CFF-SagePayments Payment Gateway", and press the "Update" button.
				

				

				In the settings area the following information is needed to activate and link the Sage Payment Solutions >> Shopping ExpressPay account to the form:

				Enable SagePayments?: Select "Yes" to enable the SagePayments TPV.

				Merchant ID (M_id): Change this value with M_id received from SagePayments.

				In addition to the mentioned two required setting field there are other fields to link the form fields to the Sage Payment Solutions payment form, like for example the client name, address, phone, email, tax and shipping cost. These fields are optionals and to link the fields you can indicate the ID of the field on the form that contains the related info. Sample values: fieldname1, fieldname2, ...

				When enabled, the customer will be redirected to the Sage Payment Solutions payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

		
			

				PayTM add-on

Platinum Version

				

				The PayTM addon provides a secure interface for accepting payments through credit card, debir cards, net banking, wallet and EMI. With over 100mn Paytm users in India, your customers will love the option to pay with their trusted Paytm Wallet. You can read more about PayTM at paywithpaytm.com.

				

				
				To activate the add-on, simply visit the plugin page through the menu option: "Settings/Calculated Fields Form", tick the checkbox: "CFF-PayTM", and press the "Update" button...
				

				

				In the settings area the following information is needed to activate and link the PayTM account to the form:

				Enable PayTM?: Select "Yes" to enable the PayTM payment gateway.

				Merchant ID: The Merchant ID provided by PayTM.

				Merchant Key: The Merchant Key provided by PayTM.

				Website Name: The Website Name provided by PayTM.

				Industry Type ID: The Industry Type ID provided by PayTM.

				Mode: Select "Sandbox" for testing purposes and "Production" for charging real payments.

				When enabled, the customer will be redirected to the PayTM payment form after the submision. The process will be similar to the way PayPal Standard works.

			

		

			

				eWay add-on

Platinum Version

				

				The eWay addon provides secure payments with eWay payment gateway. eWay is popular payment gateways in countries like Australia, New Zealand, Singapore, Hong Kong, and Macau. The eWay add-on implements the integration with the "eWay Responsive Shared Page" for accepting credit card payments, even Paypal and digital wallets via eWay.

 Note: the current version of the add-on only supports one-time payments and not recurring payments.

				
				To activate the add-on, simply visit the plugin page through the menu option: "Calculated Fields Form", tick the checkbox: "CFF-eWay", and press the "Activate/Deactivate Addons" button...
				

				

				After activating the add-on, it will appear a new section in the form's settings to integrate the eWay payment gateway with the form.

				

 The settings area includes the following attributes list:

				Enable eWay?: Select "Yes" to enable the eWay payment gateway. The attribute includes other options to activate multiple payment gateways in the form or pay later alternative.

 Payment Mode: Select between the production eWay account or the sandbox one for testing the integration.

 Integration Type: Possible values "iFrame", "Shared Page". The "Shared Page" option redirects the user to eWay to complete the payment after submitting the form. The "iFrame" option allows completing the payment on the website.

				eWay Customer API Key: API Key provided by eWay.

				eWay Customer Password: eWay integration password.

 To get your account API keys and API Password Goto My Account --> API Key. A form that you can get API key and Password for payment acquirer.If you not able to see your password generate a new one with 'Generate Password' Button.

				eWay Theme: Select the theme to apply the eWay Responsive Shared Page.

 The list of customer data and the corresponding fields in the form. This section is optional, the customer attributes are:

 Title

 First Name

 Last Name

 Company Name

 Job Description

 Street 1

 Street 2

 City

 State

 Postal Code

 Country

 Email

 Phone

 Mobile

 Comments

 Fax

 Url

 It is possible to disable the customer details section on the eWay Shared Page by ticking the "Disable Customer Information Fields on the eWay Responsive Shared Page" checkbox.
				

			

		

		
			

				Equations Format for Calculated Fields

				The equations allowed by the plugin "Calculated Fields Form" are really powerful tools.

				From the following versions of the plugin:
	1.0.139 Free
	5.0.153 Pro
	5.0.180 Developer
	10.0.196 Platinum

It is possible to use the __ME__ constant in the equations for referring to the value of the calculated field that is being calculated. For example, if the calculated field is editable, and you want get the maximum number among the value typed by the user in the field, and the sum of other two fields in the form: fieldname1+fieldname2, the equation would be as simple as: MAX(fieldname1+fieldname2,__ME__).
In previous versions of the plugin was needed to implement some tricks for accessing the value of the calculated field from its equation.

				
					Access to the fields from the equations is as simple as including their names, like, fieldname1+fieldname2

					The plugin takes the values of the fields and pre-processes them to extract the numbers to use in the mathematical operations. However, sometimes it is necessary to get the fields' values without pre-processing. In these cases, you should use the "|r" modifier (for raw) as part of the field's name,
 Ex. fieldname1|r

					For dropdown, radio buttons, and checkbox fields, where it is possible to select the information to submit between the choices' values and texts, the use of the "|v" modifier allows you to access the information to submit from the equations.
Ex. fieldname1|v

					And finally the "|n" modifier. Each time a field's name appears in an equation, the plugin replaces it by the corresponding field's value in the evaluation process. However, sometimes with need to use the fields' names and not their values. In these cases, the use of the "|n" modifier is essential because it says the plugin you want to use the fields' names.
Ex. getField(fieldname1|n).choices({texts:['A', 'B'], values:[1,2]});

				

				
					 Need more controls or operations?
Install the CP BLOCKS plugin, and visit the Marketplace:
- with buttons
- testimonial blocks
- additional features
...and more
				

				
				

				It is possible create simple equations like follow:

				 With simple mathematical operations:

All Versions of the Plugin

				
					fieldname1+fieldname2

					fieldname1*fieldname2

					fieldname1/fieldname2

					fieldname1-fieldname2

				

				or mathematical equations with multiple fields and fields grouping included.

				
					fieldname1*(fieldname2+fieldname3)

				

				The equations may include a group of more specific operations

				some of them available as buttons in the plugin's interface, the other operations should be typed manually in the equation's editor:

				
					
						sum(x,y,z,....)

						Returns the sum of values passed by parameter

						sum(3,10,11) returns 24

						If the last parameter is a function, calls the function with each of the numbers, and sums the results.

						Sum of squares:

						sum(1,2,3,4, function(x){return POW(x,2)}) returns 30

						Sum even numbers:

						sum(1,2,3,4, function(x){if(x%2 == 0) return x;}) returns 6

					

					
						sigma(n,m,callback)

						Applies the summation from x=n to m, passing x to the callback function.

						sigma(1, 4, function(x){return 2*x+1;}) returns 24

						sigma(1, 3, function(x){return x*(x+1);}) returns 20

					

					
						concatenate(x,y,z,....)

						Returns a text with all parameters concatenated

						concatenate(1, 2, 3) returns 123

					

					
						average(x,y,z,....)

						Returns the average of values passed by parameter

						average(3,10,11) returns 8

 The average operation accepts arrays of numbers: average([3,10],11) = 8

					

					
						factorial(x)

						Returns the factorial of x, or null if x is not an integer greater than 0

						factorial(4) returns 24

					

					
						remainder(x,y)

						The remainder is the integer left over after dividing one integer by another to produce an integer quotient (integer division)

						remainder(7,2) returns 1

					

					
						tobase(number,from_base,to_base)

						Converts a number from a base to another

						tobase(5, 10, 2) returns 101

						tobase('AF', 16, 10) returns 175

					

					
						abs(x)

						Returns the absolute value of x

						If the value of fieldname1 is -7.25, the result of: abs(fieldname1) would be 7.25

					

					
						acos(x)

						Returns the arccosine of x, in radians

						If the value of fieldname1 is 0.5, the result of: acos(fieldname1) would be 1.0471975511965979

					

					
						asin(x)

						Returns the arcsine of x, in radians

						If the value of fieldname1 is 0.5, the result of: asin(fieldname1) would be 0.5235987755982989

					

					
						atan(x)

						Returns the arctangent of x as a numeric value between -PI/2 and PI/2 radians

						If the value of fieldname1 is 2, the result of: atan(fieldname1) would be 1.1071487177940904

					

					
						atan2(x,y)

						Returns the arctangent of the quotient of its arguments

						If the value of fieldname1 is 8 and fieldname2 is 4, the result of: atan2(fieldname1,fieldname2) would be 1.1071487177940904

					

					
						ceil(x)

						Returns x, rounded upwards to the nearest integer.

The ceil operation accepts a second parameter, that is optional, for rounding upwards the main number to the nearest multiple of this parameter.

						If the value of fieldname1 is 1.4, the result of: ceil(fieldname1) would be 2

ceil(2.3, 0.5) = 2.5

					

					
						cos(x)

						Returns the cosine of x (x is in radians)

						If the value of fieldname1 is 3, the result of: cos(fieldname1) would be -0.9899924966004454

					

					
						radians(x)

						Converts an angle in degrees to radians (x is in degrees)

						If the value of fieldname1 is 90, the result of: radians(fieldname1) would be 1.5707963267948966

					

					
						degrees(x)

						Converts an angle in radians to degrees (x is in radians)

						If the value of fieldname1 is 1.5707963267948966, the result of: degrees(fieldname1) would be 90

					

					
						exp(x)

						Returns the value of E^x

						If the value of fieldname1 is 1, the result of: exp(fieldname1) would be 2.718281828459045

					

					
						scientifictodecimal(x)

						Returns the decimal representation of x

						scientifictodecimal(3.5e4) = 35000

					

					
						decimaltoscientific(x)

						Returns the exponential representation of x

						decimaltoscientific(35000) = 3.5e+4

					

					
						fractiontodecimal(x)

						Returns the decimal representation of x

						fractiontodecimal("2/5") = 0.4

					

					
						decimaltofraction(x)

						Returns the fraction representation of x

						decimaltofraction(0.4) = "2/5"

					

					
						fractionsum(x,y)

						Sums fractional numbers passed by parameter, returning the result also as fractional number

						fractionsum("2/4","2/6") = "5/6"

					

					
						fractionsub(x,y)

						Subtracts fractional numbers passed by parameter, returning the result also as fractional number

						fractionsub("2/4","2/6") = "1/6"

					

					
						fractionmult(x,y)

						Multiplies fractional numbers passed by parameter, returning the result also as fractional number

						fractionmult("2/4","2/6") = "1/6"

					

					
						fractiondiv(x,y)

						Divides fractional numbers passed by parameter, returning the result also as fractional number

						fractiondiv("2/4","2/6") = "3/2"

					

					
						floor(x)

						Returns x, rounded downwards to the nearest integer.

The floor operation accepts a second parameter, that is optional, for rounding downwards the main number to the nearest multiple of this parameter.

						If the value of fieldname1 is 1.6, the result of: floor(fieldname1) would be 1

floor(2.6, 0.5) = 2.5

					

					
						log(x)

						Returns the natural logarithm (base E) of x

						If the value of fieldname1 is 2, the result of: log(fieldname1) would be 0.6931471805599453

					

					
						logab(x,y)

						Returns the logarithm of x base y

						If the value of fieldname1 is 2, and the value of fieldname2 is 10, the result of: logab(fieldname1,fieldname2) would be 0.30102999566398114

					

					
						max(x,y,z,...,n)

						Returns the number with the highest value

						If the value of fieldname1 is 5 and fieldname2 is 10, the result of: max(fieldname1, fieldname2) would be 10

					

					
						min(x,y,z,...,n)

						Returns the number with the lowest value

						If the value of fieldname1 is 5 and fieldname2 is 10, the result of: min(fieldname1, fieldname2) would be 5

					

					
						FORMAT(n, config)

						Formats the number passed as the first parameters, based on the configuration object passed as second parameter.

						The configuration object accepts the attributes:

						prefix: information to include at the beginning of the number. Ex. $

						suffix: information to include at the end of the number. Ex. usd

						decimalsymbol: symbol to use for decimals. Ex. the dot (.)

						groupingsymbol: symbol to use for grouping thousands. Ex. the comma (,)

						currency: boolean that indicates the number represents a currency value. Ex. true
						

						FORMAT(-1234.56, {prefix:"$", suffix:" usd", groupingsymbol:",", decimalsymbol:".", currency:true}) = "-$1,234.56 usd"

					

					
						pow(x,y)

						Returns the value of x to the power of y

						If the value of fieldname1 is 4 and fieldname2 is 3, the result of: pow(fieldname1, fieldname2) would be 64

					

					
						random()

						Returns a random number between 0 and 1

						

					

					
						round(x)

						Rounds x to the nearest integer.

The round operation accepts a second parameter, that is optional, for rounding the main number to the nearest multiple of this parameter.

						If the value of fieldname1 is 2.5, the result of: round(fieldname1) would be 3

round(2.3, 0.5) = 2.5

					

					
						sin(x)

						Returns the sine of x (x is in radians)

						If the value of fieldname1 is 3, the result of: sin(fieldname1) would be 0.1411200080598672

					

					
						sqrt(x)

						Returns the square root of x

						If the value of fieldname1 is 9, the result of: sqrt(fieldname1) would be 3

					

					
						nthroot(x,y)

						Returns the y root of x

						nthroot(27,3) = 3

					

					
						tan(x)

						Returns the tangent of an angle

						If the value of fieldname1 is 90, the result of: tan(fieldname1) would be -1.995200412208242

					

					
						gcd(x,y)

						Returns the greatest common divisor between x and y

						If the value of fieldname1 is 16, and the value of the fieldname2 is 12 the result of: gcd(fieldname1,fieldname2) would be 4

					

					
						lcm(x,y)

						Returns the least common multiple between two numbers

						If the value of fieldname1 is 3, and the value of the fieldname2 is 5 the result of: lcm(fieldname1,fieldname2) would be 15

					

				

				Pay special attention to the next two operations. The first of them, very extended its use in equations for calculations the cost of products and services, and the other one to obtain a date.

				
					
						prec(x,y)

						Return the x number with y decimal digits

						If the value of fieldname1 is 10.33323, the result of: prec(fieldname1,2) would be 10.33

						If the value of fieldname1 is 10.3365, the result of: prec(fieldname1,2) would be 10.34

						If the value of fieldname1 is 10, the result of: prec(fieldname1,2) would be 10.00

 The prec operation supports a third parameter to return the first parameter without decimal places if it is an integer number:
PREC(3,2)=3.00
PREC(3,2,true)=3
					

					
						cdate(x, format)

						Returns the number x formatted like a Date, the second parameter defines the format of the output date ('mm/dd/yyyy', 'dd/mm/yyyy'). The number represents the number of days from Jan 1, 1970

						If fieldname1 is a date field, and its value is 3/11/2013: cdate(fieldname1+10) would be 13/11/2013

					

				

				Sample valid equations:

				To calculate the monthly payment in a lease calculator:

				The fields implied are:

				
					Load amount: fieldname1

					Residual value: fieldname2

					Interest rate %: fieldname3

					Number of months: fieldname4

					The corresponding equation for monthly payment is:

					prec((fieldname1*fieldname3/1200*pow(1+fieldname3/1200,fieldname4)-fieldname2*fieldname3/1200)/(pow(1+fieldname3/1200,fieldname8)-1),2)

				

				There is a huge number of equations that can't be recreated with simple mathematical operators, or the operations listed above.

				Pay attention to the following sample:

				In your form there are four fields: fieldname1, fieldname2, fieldname3 and the calculated field: fieldname4, but the value of fieldname4 is dependent of fieldname3 value, that is:

				 The value of fieldname4 will be: fieldname1+fieldname2, if the value of fieldname3 is greater than 100, or will be: fieldname1*fieldname2, if the value of fieldname3 is less than or equal to 100. Neither of previous operations, by itself, can calculate the value of fieldname4.

				To solve complex cases like this, the "Calculated Fields Form" plugin allows entering javascript code directly in the equation editor, like the following sample:

				
					(function(){

					
						if(fieldname3 > 100) return fieldname1+fieldname2;

						if(fieldname3 <= 100) return fieldname1*fieldname2;

					

					})();

				

				For complex equations where is required to define blocks of javascript code, you must use the following format:

				
					(function(){

					//Your code here

					})();

				

				and the return the value of that function will be the value assigned to the calculated field:

				
					return fieldname1+fieldname2;

				

				Pay attention, the plugin removes the changes of lines from the equations at runtime. So, if the equation is defined with the "function" format:

				
				(function(){

					//Your code here

					})();

				

				It is really important to include the semicolon symbols (;) at the end of the code lines, furthermore, if the equation is really complex, and you want to include comments for future references, should be used the format for multiple lines comments: /* comment here */, but never the format for single line of comments: // comment here

				Related Information....

					BLOG: Calculated Fields Forms, the most misunderstood operations

			

		

		
			
				Logical Module

All Versions of the Plugin

				The logical module includes the following operations:

				
					
						IF(condition, value if true, value if false)

						Checks whether a condition is met, and returns one value if true, and another if false.IF(logical_test, value_if_true, value_if_false)

						If the value of fieldname1 is 10 and the value of fieldname2 is 20, the result of:

						IF(fieldname1 < fieldname2, fieldname1, fieldname2)

						would be 10

					

					
						AND(x,y,z,....)

						Checks whether all arguments are true, and return true if all values are true, and false in another way. AND(logical1,logical2,...)

						Suppose there are three fields, fieldname1, fieldname2 and fieldname3, with values: 10, 20 and 30 respectively, so:

						AND(fieldname1<100, fieldname2<100, fieldname3<100)

						would be true

						but

						AND(fieldname1<100, fieldname2<100, fieldname3<25)

						is
						 false, because the fieldname3 is bigger than 25

					

					
						OR(x,y,z,....)

						Checks whether any of arguments is true, and return true if any of values is true, and false if all values are false. OR(logical1,logical2,...)

						Suppose there are three fields, fieldname1, fieldname2 and fieldname3, with values: 10, 20 and 30 respectively, so:

						OR(fieldname1<100, fieldname2<100, fieldname3<25)

						is true, because at least the two initial conditions are true, inclusive if the third condition fails.

						but

						OR(fieldname1<5, fieldname2<5, fieldname3<25)

						is false, because the three conditions fail

					

					
						NOT(x)

						Changes false to true, or true to false.NOT(logical)

						NOT(true)

						return false

						NOT(false)

						return true

					

					
						IN(x,[x,y,z,....])

						Checks whether the term is included in the second argument, the second argument may be a string or strings array. IN(term, string/array)

						IN(10,[10,20,30,40])

						Return true

						IN('world', 'hello world')

						Return true

					

				

			

		

		
			

				Financial Module

Developer Version
Platinum Version

				The module includes a pack of functions to improve the implementation of financial equations. Distributed with the Developer or Platinum versions of the plugin.

				
					
						CALCULATEPAYMENT(x,y,z)

						Calculates the Financed Payment Amount

						Three parameters: amount, months, interest rate (percent)

						Ex: CALCULATEPAYMENT(25000, 60, 5.25)

						Result: 474.65

					

					
						CALCULATEAMOUNT(x,y,z)

						Calculates the Financed Amount

						Three parameters: months, interest rate (percent), payment

						Ex: CALCULATEAMOUNT(60, 5.25, 474.65)

						Result: 25000.02

					

					
						CALCULATEMONTHS(x,y,z)

						Calculates the Months Financed

						Three parameters: amount, interest rate (percent), payment

						Ex: CALCULATEMONTHS(25000, 5.25, 474.65)

						Result: 60

					

					
						CALCULATEINTEREST(x,y,z)

						Calculates the Financed Interest Rate

						Three parameters: amount, months, payment

						Ex: CALCULATEINTEREST(25000, 60, 474.65)

						Result: 5.25

					

					
						CALCULATEACCRUEDINTEREST(x,y,z)

						Calculates the Accrued Interest

						If your money is in a bank account accruing interest, how much does it earn over x months? Three parameters: principle amount, months, interest rate (percent)

						Ex: CALCULATEACCRUEDINTEREST(25000, 60, 5.25)

						Result: 7485.806648756854

					

					
						CALCULATEAMORTIZATION(x,y,z,date)

						Creates an amortization Schedule

						Create an amortization schedule. The result should be an array whose length in the number of months. Each entry is an object. Four parameters: principle amount, months, interest rate (percent), start date (optional Date object)

						Ex: CALCULATEAMORTIZATION(25000, 60, 5.25, new Date(2011,11,20))

						Result:

						[

						{

						principle: 24634.725

						interest: 109.375

						payment: 474.65

						paymentToPrinciple: 365.275

						paymentToInterest: 109.375

						date: Tue Dec 20 2011 00:00:00 GMT+0100 (Romance Daylight Time)

						},

						{

						principle: 24267.851921874997

						interest: 217.151921875

						payment: 474.65

						paymentToPrinciple: 366.873078125

						paymentToInterest: 107.776921875

						date: Fri Jan 20 2012 00:00:00 GMT+0100 (Romance Daylight Time)

						},

						...

]

					

				

				The CALCULATEAMORTIZATION is the operation with most complexity in the "Calculated Fields Form" and requires its own section.

				The CALCULATEAMORTIZATION operation returns a list of objects. For example:

CALCULATEAMORTIZATION(25000, 60, 5.25, new Date(2011,11,20))

	Result:
		[
			{
				principle: 24634.725
				interest: 109.375
				payment: 474.65
				paymentToPrinciple: 365.275
				paymentToInterest: 109.375
				date: Tue Dec 20 2011 00:00:00 GMT+0100 (Romance Daylight Time)
			},
			{
				principle: 24267.851921874997
				interest: 217.151921875
				payment: 474.65
				paymentToPrinciple: 366.873078125
				paymentToInterest: 107.776921875
				date: Fri Jan 20 2012 00:00:00 GMT+0100 (Romance Daylight Time)
			},
			...
]

					principle: how much remains to pay.
	interest: is the accumulated of interest paid until this date.
	payment: is the monthly payment (payment of interests and payment of principle).
	paymentToPrinciple: is the part of payment that is considered as payment of principle.
	paymentToInterest: is the part of payment that is considered as payment of interest.
	date: is the date of payment.

				In the following example, we explain the use of the CALCULATEAMORTIZATION operation: the fieldname1 represents the principle amount, fieldname3 the number of months, and the fieldname2 the interest rate.

				So, the value returned by CALCULATEAMORTIZATION(fieldname1,fieldname3,fieldname2) cannot by assigned directly to the calculated field, or will be displayed a text like: [object],[object],...... Therefore, we'll need to create a formatted string, with HTML tags, to display the CALCULATEAMORTIZATION results in an understandable format.

				(function(){
					
 var r = CALCULATEAMORTIZATION(fieldname1,fieldname3,fieldname2),
					
 str = '';
					

					
 if(r.length)
					
 {
					
 str = '<table cellpadding=" 10" >';
					
 str += '<tr>';
					
 str += '<td>Date</td>';
					
 str += '<td>Interest</td>';
					
 str += '<td>Payment</td>';
					
 str += '<td>Payment to Interest</td>';
					
 str += '<td>Payment to Principle</td>';
					
 str += '<td>Principle</td>';
					
 str += '</tr>';
					
 for(var i = 0, h = r.length; i < h; i++)
					
 {
					
 str += '<tr>';
					
 str += '<td>'+GETDATETIMESTRING(new Date(r[i]['date']), 'yyyy-mm-dd')+'</td>';
					
 str += '<td>'+PREC(r[i]['interest'],2)+'</td>';
					
 str += '<td>'+PREC(r[i]['payment'],2)+'</td>';
					
 str += '<td>'+PREC(r[i]['paymentToInterest'],2)+'</td>';
					
 str += '<td>'+PREC(r[i]['paymentToPrinciple'],2)+'</td>';
					
 str += '<td>'+PREC(r[i]['principle'],2)+'</td>';
					
 str += '</tr>';
					
 }
					
 str += '</table>';
					
 }
					
 jQuery('.result-here').html(str);
					
})()
				

				The first step will be store the list of objects returned by the CALCULATEAMORTIZATION operation, in a local variable, and create another variable to store the amortization data, but with an HTML format:

var r = CALCULATEAMORTIZATION(fieldname1,fieldname3,fieldname2),
str = '';

				The equation validates if the previous operation returns a value, because if the CALCULATEAMORTIZATION was called with wrong values can return an empty array:
				

if(r.length)
{
...
}

				I've decided display the results of CALCULATEAMORTIZATION operation in a tabular format because is easier to understand. The first element in the result is the tag to open the table: <table>, and the row with the column names:
				

str = '<table cellpadding=" 10" >';
str += '<tr>';
str += '<td>Date</td>';
str += '<td>Interest</td>';
str += '<td>Payment</td>';
str += '<td>Payment to Interest</td>';
str += '<td>Payment to Principle</td>';
str += '<td>Principle</td>';
str += '</tr>';

				Now, it is the moment to create each row of the table with the values of monthly amortization.
				

for(var i = 0, h = r.length; i < h; i++)
{
 str += '<tr>';
 str += '<td>'+GETDATETIMESTRING(new Date(r[i]['date']), 'yyyy-mm-dd')+'</td>';
 str += '<td>'+PREC(r[i]['interest'],2)+'</td>';
 str += '<td>'+PREC(r[i]['payment'],2)+'</td>';
 str += '<td>'+PREC(r[i]['paymentToInterest'],2)+'</td>';
 str += '<td>'+PREC(r[i]['paymentToPrinciple'],2)+'</td>';
 str += '<td>'+PREC(r[i]['principle'],2)+'</td>';
 str += '</tr>';
}

				The previous code has its particularities. By default the dates returned by the CALCULATEAMORTIZATION operation have the complete format including hours and seconds, In this form the information about hours and seconds is not relevant, so, it is preferred to use a short date format: yyyy-mm-dd. The date string will be formatted with the GETDATETIMESTRING operation, included in the Date module of developers version of the plugin (the second parameter is the format to use):
				

str += '<td>'+GETDATETIMESTRING(new Date(r[i]['date']), 'yyyy-mm-dd')+'</td>';

				Another particularity is the use of the PREC operation. By default the CALCULATEAMORTIZATION returns the numeric values with all its decimals digits, for example: 366.873078125, but for humans it is common to identify the money representation with two decimal digits. So, I've used the PREC operation with the number 2 as the second parameter.
				

str += '<td>'+PREC(r[i]['interest'],2)+'</td>';

				After creating all table rows, it is time to close the table, and print the results:
				

str += '</table>';

				If you display the result directly in the calculated field, you will see a weird text (or very hard to understand) because the input fields in HTML are not able to display tables, in this case I've preferred to show the result in an "HTML Content" field. I've inserted an "HTML Content" field in the form, and entered a DIV tag as its content with the class name: result-here <div class="result-here"></div>. Then, using jQuery to display the table with the results into the DIV tag:
				

jQuery('.result-here').html(str);

				The complete equation is:

(function(){
	
 var r = CALCULATEAMORTIZATION(fieldname1,fieldname3,fieldname2),
	
 str = '';
	

	
 if(r.length)
	
 {
	
 str = '<table cellpadding=" 10" >';
	
 str += '<tr>';
	
 str += '<td>Date</td>';
	
 str += '<td>Interest</td>';
	
 str += '<td>Payment</td>';
	
 str += '<td>Payment to Interest</td>';
	
 str += '<td>Payment to Principle</td>';
	
 str += '<td>Principle</td>';
	
 str += '</tr>';
	
 for(var i = 0, h = r.length; i < h; i++)
	
 {
	
 str += '<tr>';
	
 str += '<td>'+GETDATETIMESTRING(new Date(r[i]['date']), 'yyyy-mm-dd')+'</td>';
	
 str += '<td>'+PREC(r[i]['interest'],2)+'</td>';
	
 str += '<td>'+PREC(r[i]['payment'],2)+'</td>';
	
 str += '<td>'+PREC(r[i]['paymentToInterest'],2)+'</td>';
	
 str += '<td>'+PREC(r[i]['paymentToPrinciple'],2)+'</td>';
	
 str += '<td>'+PREC(r[i]['principle'],2)+'</td>';
	
 str += '</tr>';
	
 }
	
 str += '</table>';
	
 }
	
 jQuery('.result-here').html(str);
	
})()

				
					
						PRESENTVALUE(x,y,z)

						Returns the present value of an investment

						The present value is the total amount that a series of future payments is worth now. It requires three parameters: The interest rate per period, the total number of payment periods, the payment made each period and cannot change over the life of the annuity, and two optional parameters: The future value of the loan or investment and the due parameter (0 - the payment is due at the end of the period; 1 - the payment is due at the beginning of the period.)

						Ex: PRESENTVALUE(0.08,5,100)

						Result: 399.27

					

					
						FUTUREVALUE(v,w,x,y,z)

						Returns an investment based on an interest rate and a constant payment schedule. Five parameters: The interest rate for the investment, the number of payments for the annuity, the amount of the payment made each period, the present value of the payments (if this parameter is omitted, it assumes to be 0), parameter that indicates when the payments are due (if this parameter is omitted, it assumes to be 0. The possible values are: 0 - Payments are due at the end of the period, 1 - Payments are due at the beginning of the period)

						Ex: FUTUREVALUE(7.5/12,24,-250,-5000,1)

					

					
						NPER(RATE,PMT,PV,FV,TYPE)

						Returns the number of periods for an investment based on periodic, constant payments and a constant interest rate
Rate is the periodic interest rate (%).
PMT, the payment made each period; it cannot change over the life of the annuity. Typically, pmt contains principal and interest but no other fees or taxes.
PV, the present value, or the lump-sum amount that a series of future payments is worth right now.
FV (optional), the future value, or a cash balance you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0 (the future value of a loan, for example, is 0).
Type (optional), the number 0 or 1 and indicates when payments are due.

						Ex: NPER(12/12, -100, -1000, 10000, 1)

						Result: 59.67386567429457

					

					
						PMT(Rate,NPer,PV,FV,TYPE)

						Returns the periodic payment for an annuity with constant interest rates
Rate is the periodic interest rate.
NPer is the number of periods in which annuity is paid.
PV is the present value (cash value) in a sequence of payments.
FV (optional) is the desired value (future value) to be reached at the end of the periodic payments.
Type (optional) is the due date for the periodic payments. Type=1 is payment at the beginning and Type=0 is payment at the end of each period.

						Ex: PMT(1.99/12,36,25000)

						Result: -715.96

					

					
						IPMT(Rate,Period,NPer,PV,FV,TYPE)

						Calculates the periodic amortizement for an investment with regular payments and a constant interest rate
Rate is the periodic interest rate (%).
Period is the period, for which the compound interest is calculated.
NPer is the number of periods in which annuity is paid.
PV is the present value (cash value) in a sequence of payments.
FV (optional) is the desired value (future value) to be reached at the end of the periods.
Type (optional) is the due date for the periodic payments. Type=1 is payment at the beginning and Type=0 is payment at the end of each period.

						Ex: IPMT(5,5,7,15000)

						Result: -352.9735

					

					
						PPMT(Rate,Period,NPer,PV,FV,TYPE)

						Returns for a given period the payment on the principal for an investment that is based on periodic and constant payments and a constant interest rate
Rate is the periodic interest rate (%).
Period is the amortizement period. P = 1 for the first and P = NPer for the last period.
NPer is the number of periods in which annuity is paid.
PV is the present value (cash value) in a sequence of payments.
FV (optional) is the desired value (future value) to be reached at the end of the periods.
Type (optional) is the due date for the periodic payments. Type=1 is payment at the beginning and Type=0 is payment at the end of each period.

						Ex: PPMT(8.75/12,1,36,5000,8000,1)

						Result: -350.99

					

					
						PVIF(Rate,Periods)

						Calculates the today value per currency received at a future date
Rate is interest rate per period (%).
Periods is the number of periods.

						Ex: PVIF(5,10)

						Result: 0.6139

					

					
						FVIFA(Rate,Periods)

						Calculates the future value interest factor of annuity
Rate is interest rate per period (%).
Periods is the number of periods.

						Ex: FVIFA(5,17)

						Result: 25.8404

					

					
						NPV(Rate,Values)

						Calculates the net present value of an investment based on a discount rate and a series of periodic cash flows.
Rate is the discount rate of the investment over one period (%).
Values is the array of values representing payments and income.

						Ex: NPV(10,[-10000,3000,4200,6800])

						Result: 1188.44

					

					
						XNPV(Rate,Values,Dates)

						Calculates the capital value (net present value)for a list of payments which take place on different dates
Rate is the internal rate of return for the payments (%).
Values and Dates refer to a series of payments and the series of associated date values. The first pair of dates defines the start of the payment plan. All other date values must be later, but need not be in any order. The series of values must contain at least one negative and one positive value (receipts and deposits).

						Ex: XNPV(9,[-10000,2750,4250,3250,2750],['1/1/2008', '3/1/2008', '10/30/2008', '2/15/2009', '4/1/2009'])

						Result: 2068.65

					

					
						IRR(Values,Guess)

						Internal Rate of Return (IRR)
The Internal Rate of Return (IRR) is a financial function that returns the internal rate of return (IRR) for a series of cash flows that occur at regular intervals.
Values is an array of cash values.
Guess (optional) is a guess that can be input for the internal rate of return (%). The default is 10.

						Ex: IRR([-10000,2000,2500,5000,1000])

						Result: 0.01996530806985132

					

					
						XIRR(Values,Dates,Guess)

						Calculates the internal rate of return for a list of payments which take place on different dates
 The calculation is based on a 365 days per year basis, ignoring leap years.
Values and Dates refer to a series of payments and the series of associated date values. The first pair of dates defines the start of the payment plan. All other date values must be later, but need not be in any order. The series of values must contain at least one negative and one positive value (receipts and deposits).
Guess (optional) is a guess that can be input for the internal rate of return (%). The default is 10.

						Ex: XIRR([-10000,2000,2500,5000,1000],['01/01/2001', '01/02/2001', '03/15/2001', '05/12/2001', '08/10/2001'],10)

						Result: 0.1948184751

					

					
						MIRR(Values,Dates,Guess)

						Calculates the modified internal rate of return on an investment based on a series of periodic cash flows and the difference between the interest rate paid on financing versus the return received on reinvested income.
Values is the array of values containing the income or payments associated with the investment.
Financing Rate is the interest rate paid on funds invested (%).
Reinvestiment Return Rate is the return (as a percentage) earned on reinvestment of income received from the investment (%).

						Ex: MIRR([-120000, 39000, 30000, 21000, 37000, 46000], 10, 12)

						Result: 12.61

					

					
						Formats a Number

						One parameters: number

						Ex:NUMBERFORMAT(-2530023420269.123456)

						Result: -2,530,023,420,269

						Ex: NUMBERFORMAT(25000.123456, {precision:2})

						Result: 25,000.12

						Format Currency

						Formats a number to a certain currency. Two parameters: number, settings (optional). If settings option is a string it is treated as a currency name. If it is an object it is used as currency settings.

						Ex: NUMBERFORMAT(25000.123456, 'USD')

						Result: $25,000.12

						The settings of format can be overridden with the "options" parameter.

						Ex: NUMBERFORMAT(-25000.123456, 'GBP', { negative: '()', precision: 3, thousand: '' })

						Result: £(25000.123)

						Format a Percent

						Formats a number with a certain precision. Two parameters: number, settings ("percent" is a format)

						Ex: NUMBERFORMAT(25000.123456, 'percent')

						Result: 25,000%

					

					
						Create a Currency

						You may create a currency. The library comes with "USD", "GBP", and "EUR" currency formats and "number" and "percent" numeric formats. Two parameters: key, settings

						Ex: ADDFORMAT('Dollars', { before: '', after: ' Dollars', precision: 0, thousand: ',', group: 3, decimal: '.', negative: '-' })

						Result: true

						Ex: NUMBERFORMAT(25000.123456, 'Dollars')

						Result: 25,000 Dollars

					

					
						REMOVEFORMAT(x)

						Removes a Currency

						To remove a currency. One parameter: key

						Ex: REMOVEFORMAT('Dollars')

						Result: true

					

				

 Related Information....

					BLOG: Simple Interest Calculator
	BLOG: Compound Interest Calculator
	BLOG: Mortgage Calculator Form

			

		

		
			

				Date Time module

Developer Version
Platinum Version

				The Date Time module includes a group of operations to manage dates and times. Distributed with the Developer or Platinum versions of the plugin.

				
					
						DATEOBJ(x,y)

						Gets the date object from a string representation of date. DATEOBJ(date_string, format)

						DATEOBJ('2013-05-21', 'yyyy-mm-dd')

						Result: date object

					

					
						LEADINGZERO(x)

						Set leading zero to values between 0 and 9. LEADINGZERO(number)

						LEADINGZERO(7)

						Result: 07

					

					
						YEAR(x,y)

						Gets the year from an string representation of date. YEAR(date_string, format)

						YEAR('2013-05-21', 'yyyy-mm-dd')

						Result: 2013

					

					
						MONTH(x,y,z)

						Gets the month from a string representation of date. MONTH(date_string, format, leading zero)

						MONTH('2013-05-21', 'yyyy-mm-dd')

						Result: 5

						MONTH('2013-05-21', 'yyyy-mm-dd', true)

						Result: 05

					

					
						MONTHNAME(date_string,format,locale)

						Gets the month name from a string representation of date. MONTHNAME(date_string, format, locale)

						The locale parameter is optional. The operation uses the client language by default.

						Accepted locale values:

						ar-SA Arabic (Saudi Arabia)

						bn-BD Bangla (Bangladesh)

						bn-IN Bangla (India)

						cs-CZ Czech (Czech Republic)

						da-DK Danish (Denmark)

						de-AT Austrian German

						de-CH "Swiss" German

						de-DE Standard German (as spoken in Germany)

						el-GR Modern Greek

						en-AU Australian English

						en-CA Canadian English

						en-GB British English

						en-IE Irish English

						en-IN Indian English

						en-NZ New Zealand English

						en-US US English

						en-ZA English (South Africa)

						es-AR Argentine Spanish

						es-CL Chilean Spanish

						es-CO Colombian Spanish

						es-ES Castilian Spanish (as spoken in Central-Northern Spain)

						es-MX Mexican Spanish

						es-US American Spanish

						fi-FI Finnish (Finland)

						fr-BE Belgian French

						fr-CA Canadian French

						fr-CH "Swiss" French

						fr-FR Standard French (especially in France)

						he-IL Hebrew (Israel)

						hi-IN Hindi (India)

						hu-HU Hungarian (Hungary)

						id-ID Indonesian (Indonesia)

						it-CH "Swiss" Italian

						it-IT Standard Italian (as spoken in Italy)

						ja-JP Japanese (Japan)

						ko-KR Korean (Republic of Korea)

						nl-BE Belgian Dutch

						nl-NL Standard Dutch (as spoken in The Netherlands)

						no-NO Norwegian (Norway)

						pl-PL Polish (Poland)

						pt-BR Brazilian Portuguese

						pt-PT European Portuguese (as written and spoken in Portugal)

						ro-RO Romanian (Romania)

						ru-RU Russian (Russian Federation)

						sk-SK Slovak (Slovakia)

						sv-SE Swedish (Sweden)

						ta-IN Indian Tamil

						ta-LK Sri Lankan Tamil

						th-TH Thai (Thailand)

						tr-TR Turkish (Turkey)

						zh-CN Mainland China, simplified characters

						zh-HK Hong Kong, traditional characters

						zh-TW Taiwan, traditional characters
						

						MONTHNAME("2023-02-06", "yyyy-mm-dd")

						Result: February

						MONTHNAME("2023-02-06", "yyyy-mm-dd","de")

						Result: Februar

					

					
						DAY(x,y,z)

						Gets the days from a string representation of date. DAY(date_string, format, leading zero)

						DAY('2013-05-21', 'yyyy-mm-dd')

						Result: 21

						DAY('2013-05-1', 'yyyy-mm-dd', true)

						Result: 01

					

					
						WEEKDAY(x,y,z)

						Gets the week day from a string representation of date. WEEKDAY(date_string, format, leading zero)

						WEEKDAY('2013-10-27', 'yyyy-mm-dd')

						Result: 1 Sunday is the day number one

						WEEKDAY('2013-10-27', 'yyyy-mm-dd', true)

						Result: 01

					

					
						WEEKDAYNAME(date_string,format,locale)

						Gets the week day name from a string representation of date. WEEKDAYNAME(date_string, format, locale)

						The locale parameter is optional. The operation uses the client language by default.

						Accepted locale values:

						ar-SA Arabic (Saudi Arabia)

						bn-BD Bangla (Bangladesh)

						bn-IN Bangla (India)

						cs-CZ Czech (Czech Republic)

						da-DK Danish (Denmark)

						de-AT Austrian German

						de-CH "Swiss" German

						de-DE Standard German (as spoken in Germany)

						el-GR Modern Greek

						en-AU Australian English

						en-CA Canadian English

						en-GB British English

						en-IE Irish English

						en-IN Indian English

						en-NZ New Zealand English

						en-US US English

						en-ZA English (South Africa)

						es-AR Argentine Spanish

						es-CL Chilean Spanish

						es-CO Colombian Spanish

						es-ES Castilian Spanish (as spoken in Central-Northern Spain)

						es-MX Mexican Spanish

						es-US American Spanish

						fi-FI Finnish (Finland)

						fr-BE Belgian French

						fr-CA Canadian French

						fr-CH "Swiss" French

						fr-FR Standard French (especially in France)

						he-IL Hebrew (Israel)

						hi-IN Hindi (India)

						hu-HU Hungarian (Hungary)

						id-ID Indonesian (Indonesia)

						it-CH "Swiss" Italian

						it-IT Standard Italian (as spoken in Italy)

						ja-JP Japanese (Japan)

						ko-KR Korean (Republic of Korea)

						nl-BE Belgian Dutch

						nl-NL Standard Dutch (as spoken in The Netherlands)

						no-NO Norwegian (Norway)

						pl-PL Polish (Poland)

						pt-BR Brazilian Portuguese

						pt-PT European Portuguese (as written and spoken in Portugal)

						ro-RO Romanian (Romania)

						ru-RU Russian (Russian Federation)

						sk-SK Slovak (Slovakia)

						sv-SE Swedish (Sweden)

						ta-IN Indian Tamil

						ta-LK Sri Lankan Tamil

						th-TH Thai (Thailand)

						tr-TR Turkish (Turkey)

						zh-CN Mainland China, simplified characters

						zh-HK Hong Kong, traditional characters

						zh-TW Taiwan, traditional characters
						

						WEEKDAYNAME("2023-02-06", "yyyy-mm-dd")

						Result: Monday

						WEEKDAYNAME("2023-02-06", "yyyy-mm-dd","de")

						Result: Montag

					

					
						WEEKNUM(x,y,z)

						Gets the week number from a string representation of date, a year has 53 weeks.WEEKNUM(date_string, format, leading zero)

						WEEKNUM('2013-10-27', 'yyyy-mm-dd')

						Result: 43

						WEEKNUM('2013-10-08', 'yyyy-mm-dd', true)

						Result: 02

					

					
						HOURS(x,y,z)

						Gets hours from a string representation of datetime. HOURS(datetime_string, format, leading zero)

						HOURS('2013-10-27 01:21', 'yyyy-mm-dd hh:ii')

						Result: 1

						HOURS('2013-10-27 01:21', 'yyyy-mm-dd hh:ii', true)

						Result: 01

					

					
						MINUTES(x,y,z)

						Gets minutes from a string representation of datetime. MINUTES(datetime_string, format, leading zero)

						MINUTES('2013-10-27 01:22', 'yyyy-mm-dd hh:ii')

						Result: 22

						MINUTES('2013-10-27 01:09', 'yyyy-mm-dd hh:ii')

						Result: 9

						MINUTES('2013-10-27 01:09', 'yyyy-mm-dd hh:ii', true)

						Result: 09

					

					
						SECONDS(x,y,z)

						Gets seconds from a string representation of datetime. SECONDS(datetime_string, format, leading zero)

						SECONDS('2013-10-27 01:22:06', 'yyyy-mm-dd hh:ii:ss')

						Result: 6

						SECONDS('2013-10-27 01:22:06', 'yyyy-mm-dd hh:ii:ss', true)

						Result: 06

					

					
						NOW()

						Gets a date object with the current day-time information. NOW()

						NOW()

						Result: 2013-10-27 01:42:19

					

					
						TODAY()

						Gets a date object with the current day information, without the time part.TODAY()

						

					

					
						EOMONTH(date_obj, number)

						Get the last day of the month. The number parameter is optional.

						EOMONTH(DATEOBJ("2021-03-04"))
Result: Mar 31 2021

						EOMONTH(DATEOBJ("2021-03-04"), 4)
Result: Jul 31 2021

						EOMONTH(DATEOBJ("2021-03-04"), -3)
Result: Dec 31 2020

					

					
						NETWORKDAYS(date_one, date_two, date_format, holidays, holidays_format)

						Obtains the difference in days between two dates ignoring weekends (Saturdays and Sundays) and holidays.

						NETWORKDAYS(date_one, date_two, date_format, holidays, holidays_format)

						If holidays format is ignored, the plugin uses date_format.

						NETWORKDAYS("10/1/2012", "3/1/2013", "mm/dd/yyyy")

						Result: 110

						NETWORKDAYS("10/1/2012", "3/1/2013", "mm/dd/yyyy", ["12/24/2012", "12/31/2012"], "mm/dd/yyyy")

						Result: 108

					

					
						DATEDIFF(date_one, date_two, date_format, return)

						Gets the difference between two dates strings representation

						DATEDIFF(date_one, date_two, date_format, return)

						The function returns an object, whose value depends on the 'return' argument

						Possible values of return argument:

						d - returns the number of days between two dates

						m - returns the number of months between two dates, and remaining days

						y - returns the number of years between two dates, remaining months, and remaining days

						DATEDIFF('2013-10-27', '2012-06-22', 'yyyy-mm-dd', 'y')['months']

						Result: 4

						Since the third parameter tells the plugin the starting point for calculating the date difference, the resulting object for the operation:

						DATEDIFF('2013-10-27', '2012-06-22', 'yyyy-mm-dd', 'y')

						It would be:

{
"years": 1,
"months": 4,
"days": 5,
"hours": 0,
"minutes": 0,
"seconds": 0
}

						One year, four months, and five days more.

						However, the resulting object for the operation:

						DATEDIFF('2013-10-27', '2012-06-22', 'yyyy-mm-dd', 'm')

						It would be:

{
"years": -1,
"months": 16,
"days": 5,
"hours": 0,
"minutes": 0,
"seconds": 0
}

						In this case, the value of the "years" property is -1 because the operation tells the plugin to use "months" as the starting point to calculate the difference. So, instead of 1 year and four months, the resulting object indicates the difference is sixteen months and five days.
						
Similarly, the resulting object for the third example:

						DATEDIFF('2013-10-27', '2012-06-22', 'yyyy-mm-dd', 'd')

						It would be:

{
"years": -1,
"months": -1,
"days": 492,
"hours": 0,
"minutes": 0,
"seconds": 0
}

					

					
						DATETIMESUM(date_string, format, number, to_increase, ignore_weekends <optional>)

						Increases the date-time string representation in the number of seconds, minutes, hours, days, months, or years, passed as parameter.

						ignore_weekends is an optional parameter that applys only on days increment. It ignores the Saturdays and Sundays in the sum.

						DATETIMESUM(date_string, format, number, to_increase)

						DATETIMESUM('2013-10-27', 'yyyy-mm-dd', 6, 'd')

						Result: The date object representation of 2013/11/01, Saturday.

 DATETIMESUM('2013-10-27', 'yyyy-mm-dd', 6, 'd', true)

						Result: The date object representation of 2013/11/04, Monday.

					

					
						GETDATETIMESTRING(datetime_object, format)

						Returns the string representation of a date object

						GETDATETIMESTRING(TODAY(), 'yyyy-mm-dd')

						Result: 2013-10-27

					

					
						DECIMALTOTIME(decimal, format, time format)

						Converts a decimal number to a time format text. The operation requires three parameters, the decimal number, character indicating the decimal representation ("y" for years, "m" for months, "d" for days, "h" for hours, "i" for minutes, and "s" for seconds), text for time format ("h:i:s").

						DECIMALTOTIME(938405,"s","d days, h hours, i minutes, and s seconds")

						Result: 10 days, 20 hours, 40 minutes, and 5 seconds

					

					
						TIMETODECIMAL(time text, time format, output format)

						Converts a time text to a decimal number. The operation requires three parameters, the text with time representation, the time format representation ("h:i:d"), character with the output format ("y" for years, "m" for months, "d" for days, "h" for hours, "i" for minutes, and "s" for seconds).

						TIMETODECIMAL("20:40:5","h:i:s","s")

						Result: 74405

					

				

			

		

		
			

				DISTANCE MODULE

Developer Version
Platinum Version

				The distance module integrates the Calculated Fields Form with the Google Maps (Distributed with the Developer or Platinum versions of the plugin):

				
					
						DISTANCE(Address A, Address B, Unit System, Travel Mode)

						Returns the distance between two addresses, in the unit system passed as parameter, and with the travel mode selected. Returns the FAIL text if at least one of addresses is invalid, or it is not possible access to Google.

						The addresses A and B are posts addresses, or post codes.

						The allowed values for Unit System are: km for kilometters, or mi for miles, km is the value by default.

						The allowed values for Travel Mode are: DRIVING, BICYCLING, TRANSIT, WALKING, or STRAIGHT.

						DRIVING is the value by default, and STRAIGHT determines the straight line between the addresses.

						DISTANCE('33122', '32801', 'mi', 'DRIVING') would be 240

					

					
						TRAVELTIME(Address A, Address B, Return as Text, Travel Mode, Avoid Highways, Avoid Tolls)

						Returns the distance between two addresses, in the unit system passed as parameter, and with the travel mode selected. Returns the FAIL text if at least one of addresses is invalid, or it is not possible access to Google.

						The addresses A and B are posts addresses, or post codes.

						The allowed values for Return as Text are: 1 to get values in text format as 11 min, or 0 to get the value in seconds, zero is the default value.

						The allowed values for Travel Mode are: DRIVING, BICYCLING, TRANSIT, or WALKING, DRIVING is the value by default.

						The allowed values for Avoid Highways and Avoid Tolls are: 1 or 0, zero as the default value.

						TRAVELTIME('Murray BMCC, 70 Murray St, New York, NY 10007, USA', '384-386 Broadway, New York, NY 10013, USA',1,'WALKING') Result: 13 min

					

					
						LATLNG(address)

						Returns an array with the pair of values [latitude,longitude] corresponding to the address.

						LATLNG('Murray BMCC, 70 Murray St, New York, NY 10007, USA') Result: [40.7144859, -74.0106983]

					

					
						DMSTODD(value in degrees, minutes and seconds format)

						Converts degrees, minutes and seconds to decimal degrees.

						If value of v is 40°40'58.1"N DMSTODD(v) would be: 40.682806

					

				

				
				Tip: You must use your personal key for Google API. Please, insert a shortcode for the variable: "google_api_key" in the webpage as: [CP_CALCULATED_FIELDS_VAR name="google_api_key" value="<your key>"]

				The API Key can be passed directly in the form's shortcode, as follows: [CP_CALCULATED_FIELDS id="1" google_api_key="<your key>"]

				

				Related Information....

					BLOG: Cases of use for a delivery project, transportation or any other project based on distance calculation

			

		

		
			

				MANAGING FIELDS MODULE

All Versions of the Plugin

				The managing fields module allows to process the fields objects:

				
					
						getField(# or fieldname#)

						Returns the internal representation of a field object.

						The getField operation can be used only in the context of the equations.

						For example, if there is the slider field: fieldname1, to assing it a value, for example:50, enter as part of the equation associated to the calculated field the piece of code:

						getField(1).setVal(50);

						If you want pass the field's name with the format: fieldname#, the correct would be use:

						getField('fieldname'+'1').setVal(50);

						Or in the equation's context: getField(fieldname1|n).setVal(50);

						The getField operation is more important than it appears at first glance. It allows to use in the equations fields that belong to other forms inserted in the same page.

						For example, assuming you have inserted the form with id=1 in the page and assigned it a unique class name:

						[CP_CALCULATED_FIELDS id="1" class="form-a"]

						Now, you want to insert a second form on the page containing with a calculated field, in whose equation you want to use the value of the field field fieldname123 of the first form, for example to duplicate its value.

						For this hypothetical case, the equation of the calculated field of the second form can be implemented as follows:

						getField(fieldname123|n, '.form-a').val()*2

					

					
						CFFSANITIZE(value, script only)

						Sanitize a value. Allows to espace every HTML tag in the value, or sanitize the script tags and events only.

						CFFSANITIZE(fieldname1);
CFFSANITIZE(fieldname1, true);

					

					
						ELEMENTINFO(selector, info)

						Get element information. It returns the value, text, or HTML of the element. The selector parameter is any valid dom selector, like "h1.post-title", and the info parameter is any of the values "text", "html", or "value"

						Ex.

						ELEMENTINFO("h1.post-title", "text");

						If the selector does not exist, the operation returns null.

					

					
						ISIGNORED(# or fieldname#, form object or form id or consecutive form number)

						Return true if the fields is ignored. The second parameter is optional.

						ISIGNORED(1);

						ISIGNORED('fieldname1|n');

						ISIGNORED('fieldname'+'1');

					

					
						IGNOREFIELD(# or fieldname#, form object or form id or consecutive form number)

						Set the field in the ignore state. Its value in the equations would be zero, furthermore, it would be excluded from the form's submission. The second parameter is optional.

						IGNOREFIELD(1);

						IGNOREFIELD('fieldname1|n');

						IGNOREFIELD('fieldname'+'1');

					

					
						ACTIVATEFIELD(# or fieldname#, form object or form id or consecutive form number)

						Activates a field that was ignored previously. The second parameter is optional.

						ACTIVATEFIELD(1);

						ACTIVATEFIELD('fieldname1|n');

						ACTIVATEFIELD('fieldname'+'1');

					

					
						HIDEFIELD(# or fieldname#, form object or form id or consecutive form number)

						Hide a field explicitly. Unlike IGNOREFIELD, this operation hides the field but does not deactivate it. The hidden fields participate in the equations and are submitted to the server. The second parameter is optional.

						HIDEFIELD(1);

						HIDEFIELD('fieldname1|n');

						HIDEFIELD('fieldname'+'1');

					

					
						SHOWFIELD(# or fieldname#, form object or form id or consecutive form number)

						Show a field explicitly. If the field was hidden by a dependency or by the IGNOREFIELD operation, it must be displayed by the ACTIVATEFIELD operation. The second parameter is optional.

						SHOWFIELD(1);

						SHOWFIELD('fieldname1|n');

						SHOWFIELD('fieldname'+'1');

					

					
						VALIDFORM(form object or selector, silent)

						Checks if the values of the form fields are valid or not. The first parameter would be a form object or a selector with the reference to the form. If this is null, or not passed to the operation, the plugin validates the first form on the page. The second parameter is a boolean (true or false), and allows us to validate the form without displaying error messages.

						VALIDFORM();

						VALIDFORM("cp_calculatedfieldsf_pform_1", true);

					

					
						VALIDFIELD(field name or number, form object or selector, silent)

						Checks if the field value is valid or not. The first parameter is required. It is the name of the field to validate (Ex. fieldname123|n) or its numeric components (Ex. 123). The second parameter would be a form object or a selector with the reference to the form. If this is null, or not passed to the operation, the plugin validates the field in the first form on the page. The third parameter is a boolean (true or false), and allows us to validate the field without displaying error messages.

						VALIDFIELD(fieldname1|n);

						VALIDFIELD(fieldname1|n, "cp_calculatedfieldsf_pform_1", true);

					

					
						ENABLEEQUATIONS(form)

						Allows to enable dynamic evaluation of equations. Accepts an optional parameter: form object, jQuery object or selector. If the parameter is omitted, enables evaluation of equations on all forms on the page.

						ENABLEEQUATIONS();

						ENABLEEQUATIONS(form);

					

					
						DISABLEEQUATIONS(form)

						Allows to disable dynamic evaluation of equations. Accepts an optional parameter: form object, jQuery object or selector. If the parameter is omitted, disables evaluation of equations on all forms on the page.

						DISABLEEQUATIONS();

						DISABLEEQUATIONS(form);

					

					
						EVALEQUATIONS(form)

						Evaluates the form equations. The form object is optional. If the form object is omitted, the plugin evaluates each equation in each form on the page.

						EVALEQUATIONS(form);

						EVALEQUATIONS();

					

					
						EVALEQUATION(form, 'fieldname#')

						Evaluate specific equation. Requires two parameters, the form object and the field name, or the numeric part of the field name.

						EVALEQUATION(form, 'fieldname1');

						EVALEQUATION(form, 1);

					

						GOTOFIELD(field, form object)

						Jumps to a field in the form.

 field, integer number corresponding to the number component in the field name or the field name (required parameter).

 form object, an optional parameter corresponding to the form where the field is.

						In the context of the equation, call the operation passing only the number component in the field name,

 Ex. GOTOFIELD(2);

 But if the operation is called from the onclick event of a button, the form object is required,

 Ex. GOTOFIELD("fieldname2", this.form);

					

						GOTOPAGE(page, form object)

						Jumps to a page in a multipage form.

 page, integer corresponding to the page index, starting at zero (required parameter).

 form object, optional parameter corresponding to the multipage form.

						In the context of the equation, call the operation passing only the page index,

 Ex. GOTOPAGE(2);

 But if the operation is called from the onclick event of a button, the form object is required,

 Ex. GOTOPAGE(2, this.form);

					

						COPYFIELDVALUE(# or fieldname#, form object or form id or consecutive form number)

						Copies the field value to the clipboard. Supports input and textarea tags.

 The first parameter is required, it would be the numeric part of the field name or the field name.

 The second parameter would be a form object, or a selector with the form reference. If the second parameter is not passed, the plugin will copy the value of the field in the first form of the page.

 Ex. COPYFIELDVALUE(1); - or - COPYFIELDVALUE("fieldname1");

					

						PRINTFORM(true or false)

						Print the form area.

 The parameter is optional. In multipage forms, the true parameter makes all pages available for printing.

Ex. PRINTFORM(); - or - PRINTFORM(true);

					

					
						RESETFORM(form)

						Resets the form.

 Resets the form to the original fields values. Accepts an optional parameter: form object, jQuery object or selector. If the parameter is omitted, it resets all forms on the page.

Ex. RESETFORM(); - or - RESETFORM('#'+fbuilderjQuery.fbuilder.currentFormId);

					

				

			

			
				
					 Need more controls or operations?
Install the CP BLOCKS plugin, and visit the Marketplace:
- with buttons
- testimonial blocks
- additional features
...and more
				

			

		

		
			

				THIRD-PARTY CONNECTION MODULE

All Versions of the Plugin

				The Third-party Connection module allows the integration with third-party functions.

				
					
						cffProxy(Function, First parameter, Second parameter, ...)

						Works as proxy for calling the function passed as the first parameter, and the remaining parameters are passed as parameters of third-party function.

						The first parameter is the third-party function (it is required). The cffProxy operation pass to this third-party function a callback as the last parameter. This callback should be called from the code of the third-party function, and receives as parameter the value generated by the third-party function.

						cffProxy(function(a, b, callback){callback(a+b);}, 4, 5) the result is 9

					

				

				Related Information....

					BLOG: Using the third party connection module for calling an exchange rate service

			

		

		
			

				SERVER SIDE MODULE

Developer Version
Platinum Version

				This operations module is distributed with the "Server Side Equations add-on" and includes the SERVER_SIDE operation for calling the server side equations with AJAX:

				
					
						SERVER_SIDE(Equation Name, First parameter, Second parameter, ...)

						Returns the result of the server side equation.

						The first parameter is required, it is a text with the equation's name, for example: 'square_root_equation'.

						The rest of parameters in the operation are passed as parameters of the server side equation.

						SERVER_SIDE('square_root_equation', 4) is equal to 2

					

				

				Related Information....

					BLOG: The use of Server Side equations
	BLOG: Is it possible to collect the user information without submitting the form? Not by default....but yes, you can
	BLOG: Implementing a posts filter using the Calculated Fields Form plugin
	BLOG: Cases of use for a delivery project, transportation or any other project based on distance calculation with Bing Maps

			

		

		
			

				CHART.JS MODULE

Developer Version
Platinum Version

				The Chart.js module allwos to includes charts generated with the Chart.js API in the forms (Distributed with the Developer or Platinum versions of the plugin):

				
					
						CFFCHART(canvas tag id, object with the data and options, field object)

						It is a proxy for the Chart method in the Chart.js API. The functions accepts the same parameters in the Chart function.

						The first parameter is the id of the canvas tag where the chart would be generated.

						The second parameter is a plain object with the labes, datasets, and options, required by Chart.js. Click here for the API Documentation.

						The third parameter (optional) is the object representation of the field to be populated with the chart image encoded as base64.

						CFFCHART('canvas_id', {type:'bar', data:{labels:['Label A', 'Label B'], datasets:[{data:[fieldname1, fieldname2]}]}})

						CFFCHART('canvas_id', {type:'bar', data:{labels:['Label A', 'Label B'], datasets:[{data:[fieldname1, fieldname2]}]}}, getField(fieldname4|n))

					

				

					
						Note: The second parameter accepts the version attribute to decide the ChartJS API version to use. Ex:

						CFFCHART('canvas_id', {version:'3.7.1', type:'bar', data:{labels:['Label A', 'Label B'], datasets:[{data:[fieldname1, fieldname2]}]}});
					

					
						It is possible to register ChartJS plugins by passing an objects list with the plugins' URLs and a callback function to call after loading the plugin:

CFFCHART("my-chart", {
 type: "bar",
 data: {
 labels: ["Foo", "Bar"],
 datasets: [{
 label: "bad",
 data: [5, 25],
 backgroundColor: "rgba(244, 143, 177, 0.6)"
 }, {
 label: "better",
 data: [15, 10],
 backgroundColor: "rgba(255, 235, 59, 0.6)"
 }, {
 label: "good",
 data: [10, 8],
 backgroundColor: "rgba(100, 181, 246, 0.6)"
 },
],
 },
 options: {
 indexAxis: "y",
 plugins: {
 stacked100: {
 enable: true
 },
 "datalabels" : false
 },
 },
 register_plugins:[
 {
 "url":"https://cdn.jsdelivr.net/npm/chartjs-plugin-stacked100@1.0.0",
 "callback":function(){Chart.register(ChartjsPluginStacked100.default);}
 }
]
});

					

				The process would be as follows:

				* Insert a "HTML Content" field in the form with the canvas tag as its content:

				<canvas id="canvas_id"></canvas>

				* Uses the CFFCHART operation as part of the equation:

				('canvas_id', {type:'bar', labels:['Label A', 'Label B'], datasets:[{data:[fieldname1, fieldname2]}]})

				

				Related Information....

				More information with a detailed description of parameters and practical demos in the post of the plugin's blog: Chart Generation

			

		

		
			
				URL Module

All Versions of the Plugin

				The URL module includes the following operations:

				
					
						getURL

						Returns the current page's URL

						getURL()

					

					
						getBaseURL

						Returns the base URL of the current page

						getBaseURL()

					

					
						getURLHash

						Returns # followed by the fragment identifier of the current page URL, or empty text. getURLHash accepts an optional parameter to removes the hash (#) symbol

						Ex. https://www.website.com/page#position
getURLHash() returns #position
getURLHash(true) returns position

					

					
						getURLPath

						Returns the initial / symbol followed by the path of the current page URL, or empty text. getURLPath accepts an optional parameter to removes the leading and trailing slash (/) symbols

						Ex. https://www.website.com/pages/page1/
getURLPath() returns /pages/page1/
getURLPath(true) returns pages/page1

					

					
						getURLParameters(url)

						Returns a plain object with the URLs parameters. The operation accepts an URL as optional parameter

						getURLParameters()

					

					
						getURLParameter(parameter_name, default_value)

						Returns the value of an URL parameter. The operation accepts two parameters: the parameter name and the dafault value. The default value would be returned if the URL parameter does not exist. If not default value is passed as parameter, and the URL parameter does not exist, the operation returns null

						
 If the page's url is: http://www.website.com/?username=john

						getURLParameter('username', '')

						returns john

					

					
						getReferrer()

						Returns the URL of referrer.

					

					
						generateURL(url, parameters, hash)

						Generates an URL given their components. The operation accepts three parameters: the base URL (required parameter), a plain object for the URL parameters (optional parameter), a text with the hash (optional parameter).

						generateURL("http://www.website.com", {"param1":"value1", "param2":"value2"}, "bookmark")

returns the URL http://www.website.com?param1=value1¶m2=value2#bookmark

					

					
						redirectToURL(url, object)

						Redirects the user. The operation accepts two parameters: the URL and a plain object for the parameters

						redirectToURL('http://www.website.com/',{username: 'john'})

					

				

			

		

		
			
				Handling of Files and Their Properties

All Versions of the Plugin

				The Handling Files module includes the following operations:

				
					
						PDFPAGESNUMBER

						Returns the pages number in a PDF file. It receives the "Upload File" field name or the numeric component of the field name and returns the number of pages.

 Ex. PDFPAGESNUMBER(fieldname123|n); or PDFPAGESNUMBER(123);

If the Upload File field accepts multiple files, the operation result would be an array with the number of pages on files.

					

					
						IMGDIMENSION

						Returns an object with two attributes: width and height of an image. It receives the "Upload File" field name or the numeric component of the field name and returns an object with the dimensions of the image selected.

 Ex. IMGDIMENSION(fieldname123|n); or IMGDIMENSION(123);

If the Upload File field accepts multiple files, the operation result would be an array objects, one of the per selected file.

					

					
						VIEWFILE

						Displays the files into a tag. Pass the "Upload File" field name or the numeric component of the field name and the tag id where display the files.

 Ex. VIEWFILE(fieldname123|n, "tag-id"); or VIEWFILE(123, "tag-id");

If the Upload File field accepts multiple files, the operation will include multiple viewers.

					

					
						CSVTOJSON

						It takes the client CSV file and converts it into a JSON object you can use with the equations and DS fields.
CSVTOJSON(field name, arguments(optional))
Pass the "Upload File" field name or the numeric component of the field name and the arguments object with CSV attributes like, headline (the CSV file includes headline or not), delimiter (the columns delimiter symbol, uses comma by default), quote (the quote symblo to enclose text columns, uses double-quote by default).

 Ex. CSVTOJSON(fieldname123|n); or CSVTOJSON(123); or CSVTOJSON(fieldname123|n,{headline:1,delimiter:","});

					

					
						JSONTOCSV

						It takes an array or JSON object and generates a CSV file the user can store on his computer.
JSONTOCSV(array or JSON, columns delimiter (optional), CSV file name (optional))
Pass the array or JSON object, the columns delimiter symbol (the plugin uses the comma symbol by default), and the file name (Like data.csv). If the file name is omitted, the operation returns the output in CSV format but does not generate the file
Ex. JSONTOCSV([{a:1,b:2}, {a:34,b:8},{a:7,b:2}], ",", "data.csv");

					

				

 Related Information....

 	BLOG: Use case of a publishing house. Handling files operations module

			

		

		
			
				Text Operations

All Versions of the Plugin

				The Text Operations module includes the following operations:

				
					
						WORDSCOUNTER

						WORDSCOUNTER(text)
Returns the number of words in text.

 Ex. WORDSCOUNTER(fieldname123|r);

					

					
						CHARSCOUNTER

						CHARSCOUNTER(text, ignore blank characters)
Returns the number of characters in text. The second parameter allows ignoring blank characters in the text.

 Ex. CHARSCOUNTER(fieldname123|r); or CHARSCOUNTER(fieldname123|r, true);.

					

					
						INTEXT

						INTEXT(to search, text, case insensitive)
Returns the number of times the word, character, phrase, or regular expression appears in the text. The search can be case-sensitive or case-insensitive (optional parameter, case-sensitive by default).

 Ex. INTEXT(fieldname12|r, fieldname34|r); or INTEXT(fieldname12|r, fieldname34|r, true);.

					

				

		

		
			
				Location Operations

All Versions of the Plugin

				The Location Operations module includes the following operations:

				
					
						COUNTRY

						COUNTRY(timezone/country id)
It returns an array of country names based on the time zone (Europe/Berlin) or country id (DE). The parameter is optional. If the parameter is empty, the operation returns the visitor country.

 Ex. COUNTRY('MX');
Returns: ['Mexico']

					

					
						REGION

						REGION(timezone/country id)
It returns an array of region names based on the time zone (Europe/Berlin) or country id (DE). The parameter is optional. If the parameter is empty, the operation returns the visitor region.

 Ex. REGION(Europe/Berlin);
Returns: ['Europe']

					

					
						TIMEZONE

						TIMEZONE(country id)
Returns an array of timezones based on country id (MX). The paramater is optional. If the parameter is empty, the operation returns the visitor timezone.

 Ex. TIMEZONE('GB');
Returns ['Europe/Belfast', 'Europe/London'].

					

				

		

		
			
				Cookies Operations

All Versions of the Plugin

				The Cookies Operations module includes the following operations:

				
					
						CFFSETCOOKIE

						CFFSETCOOKIE(cookie name, cookie value, expiration days)
Creates a cookie with the name and values passed as the first and second parameter, respectively, which expires after the days interval passed as the third parameter of the operation.

					

					
						CFFGETCOOKIE

						CFFGETCOOKIE(cookie name)
Returns the cookie value or null.

					

					
						CFFCHECKCOOKIE

						CFFCHECKCOOKIE(cookie name)
Returns true or false if the cookie exists or not.

					

					
						CFFDELETECOOKIE

						CFFDELETECOOKIE(cookie name)
Overwrites the cookie with an expired date.

					

				

		

		
			

				Troubleshoot Area & General Settings

				

				The "Troubleshoot Area & General Settings" section, allows correct some possible issues, or conflicts with third party plugins, and define the general settings.

					Script load method: Changes the script load method if the form doesn't appear in the public website.
	Character encoding: Updates the charset, if you are getting problems displaying special/non-latin characters. After updated you need to edit the special characters again.
	Captcha image doesn't load: Tick the checkbox if the captcha code is not load, for calling the directly its script.
	Activate Javascript Cache: Allows caching the javascript files of the plugin.
	Activate Forms Cache: Stores the forms in cache to improve the website's performance.
	Allows to access the forms directly: This option allows to access the forms directly without inserting its shortcode on pages. It makes possible to insert the forms in other websites using iframes.
	Allows to access the forms from AMP pages: If the website generates AMP pages, enabling this option guarantees the forms be accessible from the AMP pages too.
	Modify the eMails Headers: If the notification emails are not send to the users, tries checking this checkbox, but if it is not sufficient, install and activate a SMTP plugin.
	The emails contain invalid characters: If the notification emails include weird characters, tries checking this checkbox to encode the notification emails as ISO-8859-2 and base64.
	Do not loading the forms with crawlers: The forms are not loaded when website is being indexed by search engine crawlers.
	Enter an unique field name: The name of the field that will be created to protect the forms against the spam bots. Adds a hidden text field to the forms to trap the spam bots.
	Protect the forms with nonce: Protects the form with one-time security tokens to ensure the data received come from the forms generated by the plugin.

			

		

		
			
				Filters and Actions

				The plugin calls the following list of filters and actions:

					cpcff_pre_form: Filters applied before generate the form, is passed as parameter an array with the forms attributes, and return the list of attributes, modified or not.
	cpcff_the_form: Filters applied after generate the form, is passed as parameter the HTML code of the form with the corresponding <LINK> and <SCRIPT> tags, and returns the HTML code to include in the webpage.
	cpcff_delete_form: Action called after delete a form, passing the form's id as parameter.
	cpcff_clone_form: Action called after cloning a form, passing two parameters, the original form's id, and the id of the new form.
	cpcff_export_addons: Filters applied when the form is exported, to export the add-ons settings too. Passes two parameters, an array with all the add-ons settings, and the id of the form that is being exported.
	cpcff_import_addons: Action called when a form is imported, to import the add-ons settings. Passes two parameters, an array with all the add-ons settings, and the id of the form that was imported.
	cpcff_valid_submission: Filters applied for checking if the form's submission is valid or not, returns a boolean.
	cpcff_redirect: Filters applied to decide if the website should be redirected to the thank you page after submissions, passes a boolean as parameter, and returns a boolean too.
	cpcff_csv_query: Allows modify the query of messages, passing the query as parameter, returns the new query.
	cpcff_price: The filter allows modify the calculated prices. Passes two parameters to the filter: the calculate price, and an array with the list of fields and their values. The cpcff_price filter is called before applying the coupon discounts.
	cpcff_get_option: Filters applied before returning a form option. Passes three parameters to the filter: The value of option, the name of option and the form's id, returns the new option's value.
	cpcff_messages_query: Allows modify the query of messages, passing the query as parameter, returns the new query.
	cpcff_process_data: Action called after be submitted the form, and processed the information in the server side.
	cpcff_payment_processed: Action called after receive the payment confirmation, passing as parameter the information collected by the form.
	cpcff_file_uploaded: Action called after upload a file through the form. It is passed as parameter the object returned by the wp_handle_upload function.
	cpcff_custom_tags: Action called after special tags are replaced in the notification emails and thank you pages. It receives two parameters: the text, and post id.
	cpcff_update_submission: Action called when a submission is updated, the submission ID is passed as parameter.
	cpcff_delete_submission: Action called when a submission is deleted, the submission ID is passed as parameter.
	cpcff_messages_filters: Additional filtering options, allows to add new fields for filtering the events in the messages screen.
	cpcff_messages_list_header: Action called to include new headers in the table of events in the messages screen.
	cpcff_message_row_data: Action called to add related data to the events in the messages screen, the row is passed as parameter.
	cpcff_message_row_buttons: Filter called to modify the buttons of events in the messages screen. The callback function receives two parameters, the HTML code of buttons, and the row.
	cpcff_script_after_validation: Action called in the generation of javascript code to validate the forms data before submission.
	cpcff_summary: Filters applied after generate the summary in the thank you pages. Passes the summary as parameter.
	cpcff_send_notification_email: Filter called before sending the notification email. It returns true or false to send the email or not. The callback function requires three parameters: boolean, submission object, form object.
	cpcff_send_confirmation_email: Filter called before sending the copy to user email. It returns true or false to send the email or not. The callback function requires three parameters: boolean, submission object, form object.
	cpcff_notification_email_attachments: Filter applied when the files are attached to the notification emails. To the callback function are passed four parameters: the attachments list, the submitted data, the form's id and the submission's id.
	cpcff_confirmation_email_attachments: Filter applied when the files are attached to the "Copy to the user" emails. To the callback function are passed four parameters: the attachments list, the submitted data, the form's id and the submission's id.

			

		

		
			
				Tips and Tricks

				
					Set the value to a slider control programmatically

						Assign a class name to the slider field, for example: my-field (the class names are assigned to the fields through the attribute: "Add Css Layout Keywords")
	Insert a "HTML Content" field in the form with the piece of code below as its content:

<SCRIPT>
function setSliderValue(clss, value)
{
var id = fbuilderjQuery('.'+clss+' input').attr('id');
var fId = id.match(/_\d+$/);
fbuilderjQuery.fbuilder.forms[fId].getItem(id).setVal(value);
}
</SCRIPT>

						
	Finally, if the equation associated to the calculated field is for example: fieldname1+fieldname2, modify it as follows:

(function(){
var v = fieldname1+fieldname2;
setSliderValue('my-field', v);
return v;
})()

						

					(*) With the "Managing Fields" operations module the process is very simple, assuming the slider field is the fieldname1 and you want assign it the value: 50, include as part of the equation the piece of code:

					getField(1).setVal(50);

				

				
					Create relationships between date fields

					Assuming there are two date fields: fieldname1, and fieldname2

						
							To configure as min date of fieldname2 the date selected in fieldname1, enter fieldname1 in its "min" attribute:

							
								
							

						
	
							To configure as max date of fieldname2 the date selected in fieldname1, enter fieldname1 in its "max" attribute:

							
								
							

						
	
							For selecting in the fieldname2 field the fieldname1 date plus "X" days (in the code below, 3 days after):

							Insert a "Calculated Field" in the form to use as an auxiliary, and enter the equation:

getField(fieldname2|n).setVal(CDATE(fieldname1+3, 'mm/dd/yyyy'));

						

				

				
					Create new validation rules

					In some situations is required that the fields values have a specif format, or maybe allow to enter only a list of values. In these cases the current validation rules (digits, numbers, max value, min value, text length, required) are not sufficient, and would be needed new rules. This section describes how to create a new validation rule, and assing it to a field.

					Assuming you need restricts the values of the fieldname1 field as US Zipcode, with the formats: #####-#### or #########, the regular expression used to validate the field's value is: /^\d{5}([\-]?\d{4})?$/

					Insert a "HTML Content" field in the form, with the piece of code below as its content:

<SCRIPT>
fbuilderjQuery(document).one('showHideDepEvent', function(){
	fbuilderjQuery
	.validator
	.addMethod(
		"zipcode",
		function(v,e)
		{
			return this.optional(e) || /^\d{5}([\-]?\d{4})?$/.test(v);
		}
);
	fbuilderjQuery.validator.messages['zipcode'] = 'The zipcode is invalid';
	fbuilderjQuery('[id*="fieldname1_"]').addClass('zipcode');
});
</SCRIPT>

					The previous code adds a new method to the "validator" object, applied to all input fields with the class name "zipcode", the method returns true if the input field is optional, or its value satisfies the format of an US zipcode. With the instruction: fbuilderjQuery.validator.messages['zipcode'] = 'The zipcode is invalid'; is defined the error message to display when the validation rule fails. The last instruction assign the class name: zipcode to the fieldname1 field, to apply on it the new validation rule.

				

				
					Storing Data in a Different Database

					The Developers version of the "Calculated Fields Form" plugin, allows storing the data submitted in a database different to the own plugin database.

					To use this feature are required some basic skills, because should be edited the "cp_calculatedfieldsf_insert_in_database.php" file included in the code of plugin.

					This file is a mockup to integrate the plugin with other MySQL database. The file should be modified manually because each database has its own structure, and gives to the users a total control on the process.

					The file's edition:

					Open the file with the text editor your choice. There are some text editors, widely recommended for code editing, like: Notepad++, Sublime Text, Vim, Atom, UEditor.

					The first section of file allows defining the constants needed for connecting with the database, and its authentication:

define('DATABASE_HOST', '');
define('DATABASE_USER', '');
define('DATABASE_PASS', '');
define('DATABASE_NAME', '');
define('DATABASE_TABLE', '');

					The name of constants are auto-descriptives:

						DATABASE_HOST: hosname or IP of database server.
	DATABASE_USER: username for database's authentication.
	DATABASE_PASS: password for database's authentication.
	DATABASE_NAME: database name.
	DATABASE_TABLE: table name.

					The plugin checks if the constants have been defined, before for running the insertion queries.

					The second section to be edited by the developers, is the creation of the variables to use in the queries. The file includes some variables as a guide of section:

$field1 = mysqli_escape_string($db_link, $params['fieldname%']);
$field2 = mysqli_escape_string($db_link, $params['fieldname%']);
$field3 = mysqli_escape_string($db_link, $params['fieldname%']);

					I'll explain this section with an example. Suppose you want store in the "my_users" table, the firstname, lastname, and email of the user, submitted through the form, and the corresponding fields in the form for these information are: fieldname1, fieldname2, and fieldname3, respectively. So, the variables are created like follow:

$field1 = mysqli_escape_string($db_link, $params['fieldname1']);
$field2 = mysqli_escape_string($db_link, $params['fieldname2']);
$field3 = mysqli_escape_string($db_link, $params['fieldname3']);

					In the previous code has been created a varaible for each field in the form. All fields are included in the $params array.

					After create the variables, is time to generate the insertion queries. The plugin includes a mockup for a hypotetical insertion query, that must be replaced with the structure of your database and the fields created previously.

mysqli_query($db_link, "INSERT INTO `".DATABASE_TABLE."` (field1, field2, field3) VALUES ('$field1', '$field2', '$field3');");

					Returning to the previous example. If the columns of the table are: firstname, lastname, and email, respectively, the query should be modified like follow:

mysqli_query($db_link, "INSERT INTO `".DATABASE_TABLE."` (firstname, lastname, email) VALUES ('$field1', '$field2', '$field3');");

					Pay attention, if the type of data in a column of table is a numeric value, should be removed the quotes around the variable name. For example, suppose the form includes a DropDown field for the year of birth, that evidently is a numeric value, I will assume this is the fieldname4. So, you should create a new variable for the new field:

$field4 = mysqli_escape_string($db_link, $params['fieldname4']);

					and modify the insertion query too:

mysqli_query($db_link, "INSERT INTO `".DATABASE_TABLE."` (firstname, lastname, email, year) VALUES ('$field1', '$field2', '$field3',$field4);");

					The $field4 variable is not closed between quotes.

					A last tip: It is possible create as many insertion queries as needed, even can use the table name directly without use the constant defined in the first section.

					Pay attention: The plugin includes a mechanism to prevent overwrites the "cp_calculatedfieldsf_insert_in_database.php" file in the update process. However, I recommend to copy the file into the "/wp-content/uploads/calculated-fields-form" directory, and the plugin would use this copy of the file instead.

 A simpler alternative would be to use the "Database Queries for Calculated Fields Form" plugin.

					Related Information....

						BLOG: Creating new posts using the "cp_calculatedfieldsf_insert_in_database.php" file
	BLOG: Building a form to update the information of logged users

				

				
					Populate a Form by Default

					The plugin adds a consecutive number to each form inserted in a webpage to prevent conflicts between different copies of a same form, starting in "1". The process will be explained in an example. I will suppose your form includes only one form created with the "Caculated Fields Form", and the form includes three fields: - a numeric field (fieldname1), a DropDown field (fieldname2), a checkbox field (fieldname3), and a single text field (fieldname4). Furthermore, the form fields should be prefilled with the values: 3 for the fieldname1, the choice with the value 4 in the fieldname2, tick the choices with the values: 1, and 2 for the fieldname3, and the "qwerty" text in the fieldname4, follows the steps below:

						Enable the text tab in the content's editor of your webpage. If are inserted HTML tags with the "Visual" tab enabled, the symbols "<" and ">" are encoded as "<" and ">" respectively.
	Inserts a pair of <SCRIPT>...</SCRIPT>, with the piece of code:

<SCRIPT>
cpcff_default = { 1 : {} };
cpcff_default[1]['fieldname1'] = 3;
cpcff_default[1]['fieldname2'] = 4;
cpcff_default[1]['fieldname3'] = [1,2];
cpcff_default[1]['fieldname4'] = "qwerty";
</SCRIPT>

						

					Pay attention to the values of the fieldname3 and fieldname4. The fieldname3 is a checkbox, as it is possible select multiple choices, should be assigned an array of values. For the fieldname4, whose value is a text, it should be closed with quotes or double quotes.

				

				
					Populate the form B with the data submitted by the form A

					The process will be explained with an example. Assuming will be populated the fields: fieldname3, and fieldname7 in the form B with the values of the fields: fieldname1, and fieldname2 submitted by the form A:

					Note: I'm assuming here the form B is the unique form inserted in the thank you page, or at least the first one. For this reason in the next code the index or attribute in the cpcff_default variable is 1 (cpcff_default = { 1 : {} };)

						Inserts the shortcode corresponding to the form B in the thank you page associated to the form A. For example if the id of the form B is 34, the shortcode would be: [CP_CALCULATED_FIELDS id="34"]
	Inserts into the same page, the shortcode to manage the submitted data, including the javascript tags with the code to populate the form B:

[CP_CALCULATED_FIELDS_RESULT]
<PRE style="display:none;"><SCRIPT>
cpcff_default = { 1 : {} };
cpcff_default[1]['fieldname3'] = '<%fieldname1_value%>';
cpcff_default[1]['fieldname7'] = '<%fieldname2_value%>';
</SCRIPT></PRE>
[/CP_CALCULATED_FIELDS_RESULT]

						

					A particular case: If there are two forms in the thank you page, and you want populate the fields: fieldname3, and fieldname7 of the first form in the page, and the fields: fieldname2, and fieldname3 in the second form, the piece of code to use would be:

					

[CP_CALCULATED_FIELDS_RESULT]
<SCRIPT>
cpcff_default = { 1 : {},2 : {} };
cpcff_default[1]['fieldname3'] = '<%fieldname1_value%>';
cpcff_default[1]['fieldname7'] = '<%fieldname2_value%>';
cpcff_default[2]['fieldname2'] = '<%fieldname1_value%>';
cpcff_default[2]['fieldname3'] = '<%fieldname2_value%>';
</SCRIPT>
[/CP_CALCULATED_FIELDS_RESULT]

					

					As you can see in the previous examples, the indices (or attributes) in the cpcff_default variable don't have relationship with the forms' ids. These indices (or attributes) indicate the possition of the form in the page, the first form, index 1, second form, index 2, and so on.

				

				
					Create New Predefined Template

					The "Caculated Fields Form" plugin includes multiple predefined templates to be used in the forms. The template is selected from the "Form Settings" tab, in the toolbar of the form builder, but can occur that the predefined templates are not sufficient to create a form with the look and feel you want.

					The template's module in our plugin, can be extended easily to create new designs, to be used in the forms of website.

					Into the "/wp-content/plugins/calculated-fields-form/templates" directory there are multiple folders, a folder for each template. The folders names have not restrictions, you simply should create a new folder for the custom template, with the name you want.

					The only one required file in a template is the "config.ini" file, whose structure is:

prefix="cp_cff_custom"
file="style.css"
title="Custom Template"
thumbnail="thumbnail.jpg"
description="This is my custom template"

					The description of attributes:

						prefix: Classname, applied to the form's container. Its value should be unique for all templates on website (required attribute).
	file: Name to the CSS file with the styles to define the appearance of form.
	title: Name of the template, displayed in the dropdown list on form settings.
	thumbnail: Name of image file, displayed when the template is selected (the image file should be stored in the template directory).
	description: Description to display when the template is selected.

					To implement a custom template to apply your forms, creates a new directory for the template into the path "/wp-content/uploads/calculated-fields-form/templates", for example "/wp-content/uploads/calculated-fields-form/templates/custom-template". Into the new directory, create a config.ini file with the template properties (described above), and the .css file with the custom design. Finally, select the new template from the "Form Template" attribute in the "Form Settings" tab. More information in the following post of the plugin's blog:
 BLOG: How do I create a new template to use with my forms?

				

				
					Printing a Form

					For printing the form only, insert a button field in the form and select the "Print" option as its type:

					

						
					

					Or call the PRINTFORM operation through the button onclick event:

					
						
					

					Related Information....

						BLOG: Printing the form using the "CP Blocks" plugin

				

			

			
			
There is a better solution for printing the forms that preserves their structures and designs. It is distributed as part of the CP BLOCKS plugin.

		

		
			

			

		

		

	

	
		
			
				Overview

					
						Features
					
	
						Add-Ons
					
	
						Templates
					
	
						Download
					
	
						Support
					
	
						The Blog
					
	
						
							
								Other Products
							
								CP Blocks
	Contact Form to Email
	Contact Form with PayPal
	Appointment Booking Calendar
	Booking Calendar Contact Form
	CP Multi View Calendar
	Music Store
	Sell Downloads
	CP Google Maps
	Loading Page
	Corner Ad
	Mobile Theme Switch
	Search In Place
	Other Products

						

					

			

			
				Menu

					
						About us
					
	
						Contact us
					
	
						Terms of use
					
	
						Support policy
					
	
						Refund policy
					
	
						Privacy
					
	
						Data Removal Request
					
	
						Affiliates
						
							Earn with Us!
						
					

			

			
				Social

					
						Youtube
					
	
						Facebook
					
	
						Twitter
					
	
						The Blog
					

			

			
				Support

					
						FAQ
					
	
						Documentation
					
	
						Contact us
					
	
						Request a customization
					

			

		

		
			
				Copyright © 2015 - 2024. CFF - CodePeople
			

		

	

	
	
	
	
	
	
	
	
	

	
